Amjad M Shraim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7133742/publications.pdf

Version: 2024-02-01

30	1,674	16 h-index	29
papers	citations		g-index
31	31	31	2146
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Concentrations of essential and toxic elements and health risk assessment in brown rice from Qatari market. Food Chemistry, 2022, 376, 131938.	4.2	15
2	Density functional theory study on the catalytic dehydrogenation of methane on MoO3 (0 10) surface. Computational and Theoretical Chemistry, 2022, 1211, 113689.	1.1	5
3	New tetradentate Schiff base Cu(II) complexes: synthesis, physicochemical, chromotropism, fluorescence, thermal, and selective catalytic oxidation. Emergent Materials, 2021, 4, 423-434.	3.2	17
4	Synthesis of Novel Aqua Æž4-NNNO/Cu(II) Complexes as Rapid and Selective Oxidative Catalysts for O-Catechol: Fluorescence, Spectral, Chromotropism and Thermal Analyses. Crystals, 2021, 11, 1072.	1.0	4
5	Diversity of arbuscular mycorrhizal fungi and its chemical drivers across dryland habitats. Mycorrhiza, 2021, 31, 685-697.	1.3	11
6	Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT - Food Science and Technology, 2021, 150, 111932.	2.5	102
7	Silica-based chelating resin bearing dual 8-Hydroxyquinoline moieties and its applications for solid phase extraction of trace metals from seawater prior to their analysis by ICP-MS. Arabian Journal of Chemistry, 2019, 12, 360-369.	2.3	11
8	Zebrafish larvae as a model to demonstrate secondary iron overload. European Journal of Haematology, 2018, 100, 536-543.	1.1	6
9	Application of FTIR and LA-ICPMS Spectroscopies as a Possible Approach for Biochemical Analyses of Different Rat Brain Regions. Applied Sciences (Switzerland), 2018, 8, 2436.	1.3	13
10	Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arabian Journal of Chemistry, 2017, 10, S719-S729.	2.3	103
11	Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arabian Journal of Chemistry, 2017, 10, S3434-S3443.	2.3	71
12	Loading Rates of Dust and Metals in Residential Houses of Arid and Dry Climatic Regions. Aerosol and Air Quality Research, 2016, 16, 2462-2473.	0.9	6
13	Aerobic sludge granulation at high temperatures for domestic wastewater treatment. Bioresource Technology, 2015, 185, 445-449.	4.8	32
14	{[2-Methyl-2-(phenoxymethyl)propane-1,3-diyl]bis(oxy)}dibenzene. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o539-o539.	0.2	0
15	Quality Assessment of Groundwater of Almadinah Almunawarah City. Global Nest Journal, 2013, 15, 374-383.	0.3	12
16	Dental clinics: A point pollution source, not only of mercury but also of other amalgam constituents. Chemosphere, 2011, 84, 1133-1139.	4.2	24
17	A Randomised intervention trial to assess two arsenic mitigation options in Bangladesh. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1897-1908.	0.9	22
18	Imidacloprid residues in fruits, vegetables and water samples from Palestine. Environmental Geochemistry and Health, 2007, 29, 45-50.	1.8	30

#	Article	IF	CITATIONS
19	Assessment of two arsenic-contaminated drinking water mitigation interventions in Bangladesh. Toxicology Letters, 2006, 164, S192-S193.	0.4	1
20	Accumulation and toxicity of monophenyl arsenicals in rat endothelial cells. Archives of Toxicology, 2005, 79, 54-61.	1.9	14
21	Subchronic Exposure to Arsenic Through Drinking Water Alters Expression of Cancer-Related Genes in Rat Liver. Toxicologic Pathology, 2004, 32, 64-72.	0.9	45
22	The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicology and Applied Pharmacology, 2004, 198, 458-467.	1.3	162
23	Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells. Archives of Toxicology, 2003, 77, 305-312.	1.9	105
24	Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou, PR China. Toxicology Letters, 2003, 137, 35-48.	0.4	76
25	A global health problem caused by arsenic from natural sources. Chemosphere, 2003, 52, 1353-1359.	4.2	567
26	Speciation of arsenic in tube-well water samples collected from West Bengal, India, by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Applied Organometallic Chemistry, 2002, 16, 202-209.	1.7	81
27	Use of perchloric acid as a reaction medium for speciation of arsenic by hydride generation–atomic absorption spectrometry. Analyst, The, 2000, 125, 949-953.	1.7	36
28	Speciation of arsenic by hydride generation–atomic absorption spectrometry (HG–AAS) in hydrochloric acid reaction medium. Talanta, 1999, 50, 1109-1127.	2.9	78
29	Ligand-metal interactions and excited state properties in ruthenium(II)-diimine complexes. Inorganica Chimica Acta, 1990, 175, 171-180.	1.2	18
30	Controlled synthesis of some mixed diimine ruthenium(II) complexes. Polyhedron, 1989, 8, 2615-2619.	1.0	7