List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7133184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser Ablation Synthesis in Solution and Nebulization of Silver-109 Nanoparticles for Mass Spectrometry and Mass Spectrometry Imaging. ACS Measurement Science Au, 2022, 2, 14-22.	1.9	17
2	Infrared pulsed fiber laserâ€produced silverâ€109â€nanoparticles for laser desorption/ionization mass spectrometry of amino acids. Journal of Mass Spectrometry, 2022, 57, e4815.	0.7	3
3	Infrared pulsed fiber laser-produced silver-109-nanoparticles for laser desorption/ionization mass spectrometry of carboxylic acids. International Journal of Mass Spectrometry, 2022, 474, 116816.	0.7	3
4	Assessment of Physicochemical, Microbiological and Toxicological Hazards at an Illegal Landfill in Central Poland. International Journal of Environmental Research and Public Health, 2022, 19, 4826.	1.2	9
5	Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients. Journal of Pharmaceutical and Biomedical Analysis, 2021, 193, 113752.	1.4	15
6	Metabolomics and metagenomics analysis of 18th century archaeological silk. International Biodeterioration and Biodegradation, 2021, 156, 105120.	1.9	5
7	Silver-109/Silver/Gold Nanoparticle-Enhanced Target Surface-Assisted Laser Desorption/Ionisation Mass Spectrometry—The New Methods for an Assessment of Mycotoxin Concentration on Building Materials. Toxins, 2021, 13, 45.	1.5	9
8	Metabolomic and elemental profiling of human tissue in kidney cancer. Metabolomics, 2021, 17, 30.	1.4	15
9	Microbiological and Toxicological Hazards in Sewage Treatment Plant Bioaerosol and Dust. Toxins, 2021, 13, 691.	1.5	12
10	Serum and urine analysis with gold nanoparticle-assisted laser desorption/ionization mass spectrometry for renal cell carcinoma metabolic biomarkers discovery. Advances in Medical Sciences, 2021, 66, 326-335.	0.9	11
11	Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based serum metabolomics of kidney cancer. Analytical and Bioanalytical Chemistry, 2020, 412, 5827-5841.	1.9	16
12	Laser Ablation Remote-Electrospray Ionisation Mass Spectrometry (LARESI MSI) Imaging—New Method for Detection and Spatial Localization of Metabolites and Mycotoxins Produced by Moulds. Toxins, 2020, 12, 720.	1.5	12
13	Gold nanostructures - assisted laser desorption/ionization mass spectrometry for kidney cancer blood serum biomarker screening. International Journal of Mass Spectrometry, 2020, 456, 116396.	0.7	5
14	Analyses of microorganisms and metabolites diversity on historic photographs using innovative methods. Journal of Cultural Heritage, 2020, 45, 101-113.	1.5	15
15	Metabolomics and metagenomics characteristic of historic beeswax seals. International Biodeterioration and Biodegradation, 2020, 152, 105012.	1.9	11
16	Gold and silver nanoparticlesâ€based laser desorption/ionization mass spectrometry method for detection and quantification of carboxylic acids. Journal of Mass Spectrometry, 2020, 55, e4604.	0.7	6
17	Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties. Polymers, 2020, 12, 344.	2.0	19
18	Localization of Metabolites of Human Kidney Tissue with Infrared Laser-Based Selected Reaction Monitoring Mass Spectrometry Imaging and Silver-109 Nanoparticle-Based Surface Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Analytical Chemistry, 2020, 92, 4251-4258.	3.2	19

#	Article	IF	CITATIONS
19	Screening of Urinary Renal Cancer Metabolic Biomarkers with Gold Nanoparticles-assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Sciences, 2020, 36, 1521-1527.	0.8	13

Mass spectrometry imaging of low molecular weight metabolites in strawberry fruit (Fragaria x) Tj ETQq0 0 0 rgBT $\frac{10}{1.4}$ Cycrlock 10 Tf 50 70

21	Metabolomic study of human tissue and urine in clear cell renal carcinoma by LC-HRMS and PLS-DA. Analytical and Bioanalytical Chemistry, 2018, 410, 3859-3869.	1.9	39
22	Silverâ€109â€based laser desorption/ionization mass spectrometry method for detection and quantification of amino acids. Journal of Mass Spectrometry, 2018, 53, 369-378.	0.7	16
23	Laser desorption/ionization MS imaging of cancer kidney tissue on silver nanoparticle-enhanced target. Bioanalysis, 2018, 10, 83-94.	0.6	15
24	Metabolic profiling of moulds with laser desorption/ionization mass spectrometry on gold nanoparticle enhanced target. Analytical Biochemistry, 2018, 549, 45-52.	1.1	11
25	Analysis of paper foxing by newly available omics techniques. International Biodeterioration and Biodegradation, 2018, 132, 157-165.	1.9	25
26	Lysine detection and quantification by laser desorption/ionization mass spectrometry on gold nanoparticle-enhanced target. Analytical Methods, 2018, 10, 5398-5405.	1.3	14
27	Visualizing spatial distribution of small molecules in the rhubarb stalk (Rheum rhabarbarum) by surface-transfer mass spectrometry imaging. Phytochemistry, 2017, 139, 72-80.	1.4	17
28	Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (<i>Allium sativum</i> L.) with Gold Nanoparticle Enhanced Target. Phytochemical Analysis, 2017, 28, 479-486.	1.2	18
29	Laser Desorption/Ionisation Mass Spectrometry Imaging of European Yew (<scp><i>Taxus) Tj ETQq1 1 0.7843</i></scp>		
		14 rgB1 /0v 1.2	eriger 10 i
30	Metabolome profiles of moulds on carton-gypsum board and malt extract agar medium obtained using an AuNPET SALDI-ToF-MS method. International Biodeterioration and Biodegradation, 2017, 125, 13-23.	1.9	11
30 31	Metabolome profiles of moulds on carton-gypsum board and malt extract agar medium obtained using an AuNPET SALDI-ToF-MS method. International Biodeterioration and Biodegradation, 2017, 125, 13-23. N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2â€ ² -deoxycytidine as a potential boron delivery agent with respect to glioblastoma. Biomedicine and Pharmacotherapy, 2017, 95, 749-755.	1.9 2.5	епідск 10 Г 11 6
30 31 32	 Metabolome profiles of moulds on carton-gypsum board and malt extract agar medium obtained using an AuNPET SALDI-ToF-MS method. International Biodeterioration and Biodegradation, 2017, 125, 13-23. N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2â€²-deoxycytidine as a potential boron delivery agent with respect to glioblastoma. Biomedicine and Pharmacotherapy, 2017, 95, 749-755. Silver nanoparticles: a mechanism of action on moulds. Metallomics, 2016, 8, 1294-1302. 	1.9 2.5 1.0	11 6 19
30 31 32 33	Metabolome profiles of moulds on carton-gypsum board and malt extract agar medium obtained using an AuNPET SALDI-ToF-MS method. International Biodeterioration and Biodegradation, 2017, 125, 13-23. N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2â€2-deoxycytidine as a potential boron delivery agent with respect to glioblastoma. Biomedicine and Pharmacotherapy, 2017, 95, 749-755. Silver nanoparticles: a mechanism of action on moulds. Metallomics, 2016, 8, 1294-1302. Surface-Transfer Mass Spectrometry Imaging of Renal Tissue on Gold Nanoparticle Enhanced Target. Analytical Chemistry, 2016, 88, 7365-7371.	1.9 2.5 1.0 3.2	11 6 19 41
30 31 32 33 34	Metabolome profiles of moulds on carton-gypsum board and malt extract agar medium obtained using an AuNPET SALDI-ToF-MS method. International Biodeterioration and Biodegradation, 2017, 125, 13-23. N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2â€2-deoxycytidine as a potential boron delivery agent with respect to glioblastoma. Biomedicine and Pharmacotherapy, 2017, 95, 749-755. Silver nanoparticles: a mechanism of action on moulds. Metallomics, 2016, 8, 1294-1302. Surface-Transfer Mass Spectrometry Imaging of Renal Tissue on Gold Nanoparticle Enhanced Target. Analytical Chemistry, 2016, 88, 7365-7371. Phosphorylation of thymidylate synthase affects slow-binding inhibition by 5-fluoro-dUMP and N ⁴	1.9 2.5 1.0 3.2 2.9	11 6 19 41 12
30 31 32 33 34 35	Metabolome profiles of moulds on carton-gypsum board and malt extract agar medium obtained using an AuNPET SALDI-ToF-MS method. International Biodeterioration and Biodegradation, 2017, 125, 13-23. N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2â€2-deoxycytidine as a potential boron delivery agent with respect to glioblastoma. Biomedicine and Pharmacotherapy, 2017, 95, 749-755. Silver nanoparticles: a mechanism of action on moulds. Metallomics, 2016, 8, 1294-1302. Surface-Transfer Mass Spectrometry Imaging of Renal Tissue on Gold Nanoparticle Enhanced Target. Analytical Chemistry, 2016, 88, 7365-7371. Phosphorylation of thymidylate synthase affects slow-binding inhibition by 5-fluoro-dUMP and N ⁴ -hydroxy-dCMP. Molecular BioSystems, 2016, 12, 1333-1341. Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Analytica Chimica Acta, 2015, 875, 61-72.	1.9 2.5 1.0 3.2 2.9 2.6	eriger 10 1 11 6 19 41 12 84

#	Article	IF	CITATIONS
37	Gold nanoparticle-enhanced target for MS analysis and imaging of harmful compounds in plant, animal tissue and on fingerprint. Analytica Chimica Acta, 2015, 895, 45-53.	2.6	27
38	Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging. Analyst, The, 2015, 140, 6195-6209.	1.7	58
39	Properties of phosphorylated thymidylate synthase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1922-1934.	1.1	15
40	Crystal structure of phosphoramide-phosphorylated thymidylate synthase reveals pSer127, reflecting probably pHis to pSer phosphotransfer. Bioorganic Chemistry, 2014, 52, 44-49.	2.0	8
41	Synthesis, reactivity and biological activity of N(4)-boronated derivatives of 2′-deoxycytidine. Bioorganic and Medicinal Chemistry, 2014, 22, 3906-3912.	1.4	16
42	Novel Monoisotopic ¹⁰⁹ AgNPET for Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 1926-1931.	3.2	44
43	Matrix-free laser desorption–ionization with silver nanoparticle-enhanced steel targets. International Journal of Mass Spectrometry, 2013, 335, 22-32.	0.7	65
44	Surface-Transfer Mass Spectrometry Imaging on a Monoisotopic Silver Nanoparticle Enhanced Target. Analytical Chemistry, 2013, 85, 12070-12076.	3.2	30
45	Silver 109 Ag Nanoparticles for Matrix-Less Mass Spectrometry of Nucleosides and Nucleic Bases. International Journal of Chemical Engineering and Applications (IJCEA), 2013, , 46-49.	0.3	2
46	The synthesis and NMR properties of boron analogues of nucleotides and cyclic nucleotides. Letters in Organic Chemistry, 2013, 10, 664-667.	0.2	0
47	Exceptionally Selective Catalytic Hydrogenation of Alkene with Pinacolborane. Letters in Organic Chemistry, 2012, 9, 257-262.	0.2	Ο
48	Boron Nucleic Acid Bases, Nucleosides and Nucleotides. Mini-Reviews in Organic Chemistry, 2012, 9, 418-425.	0.6	9
49	Tyrosinenitration affects thymidylate synthase properties. Organic and Biomolecular Chemistry, 2012, 10, 323-331.	1.5	4
50	Pincer Complexes Based on Phosphinoaminopyridines: Synthesis, Structural Characterization and Catalytic Applications. Current Organic Chemistry, 2011, 15, 3486-3502.	0.9	6
51	The Analysis of Hyperfine Shifts of Mono-Ligand High-Spin Cobalt(II) Pyrazolylborate Complexes. Applied Magnetic Resonance, 2010, 38, 321-335.	0.6	1
52	Synthesis and NMR properties of the first boron analogues of uracil. Bioorganic Chemistry, 2010, 38, 33-36.	2.0	4
53	Thiophosphorylation of free amino acids and enzyme protein by thiophosphoramidate ions. Bioorganic Chemistry, 2010, 38, 74-80.	2.0	27
54	The synthesis and NMR investigation on novel boron derivatives of stavudine. Bioorganic Chemistry, 2010, 38, 87-91.	2.0	3

#	Article	IF	CITATIONS
55	The aromaticity of 5,6-dihydroborauracil, borauracil and benzoborauracil systems. Bioorganic Chemistry, 2010, 38, 242-245.	2.0	8
56	Electron capture dissociation mass spectrometric analysis of lysine-phosphorylated peptides. Bioscience Reports, 2010, 30, 433-443.	1.1	31
57	The Synthesis, Reactivity and NMR Investigation on 15N-Thiophosphoramidates (Supplementary) Tj ETQq1 1 0.7	784314 rgE 0.2	3T /Overlock
58	Synthesis and NMR properties of novel 5,6-dihydroborauracil derivatives. Bioorganic Chemistry, 2009, 37, 65-69.	2.0	9
59	Synthesis and NMR properties of derivatives of 5,6-dihydroborauracil and 5,6-dihydroborathymine. Bioorganic Chemistry, 2009, 37, 180-184.	2.0	7
60	Molecular Sieves in Medicine. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1407-1417.	1.1	41
61	The synthesis, reactivity and 1H NMR investigation of the hydroxyborohydride anion. Inorganic Chemistry Communication, 2007, 10, 1074-1078.	1.8	16
62	Application of nicotine enantiomers, derivatives and analogues in therapy of neurodegenerative disorders. European Journal of Pharmacology, 2007, 563, 18-39.	1.7	66
63	Complexes of heteroscorpionate trispyrazolylborate ligands. Part XII. Variable hapticity of hydrobis(3-phenyl-5-isopropylpyrazolyl)(3,5-dimethylpyrazolyl)borate in its rhodium(I) complexes with COD and NBD. Polyhedron, 2004, 23, 219-223.	1.0	7
64	Complexes of heteroscorpionate trispyrazolylborate ligands. Part XI. Weak CH/İ€ interactions in crystals of hydrotris(3-phenylpyrazolyl)boratothallium(I) and hydrobis(5-methyl-3-phenylpyrazolyl)(3,5-dimethylpyrazol-yl)boratothallium(I) studied by X-ray crystallography, lournal of Molecular Structure, 2004, 690, 175-180	1.8	16
65	Synthesis, X-ray Crystallographic and 1H NMR Spectroscopic Structural Studies on Cobalt(II) Complexes of Homoscorpionate, Heteroscorpionates and Chiral Tris(pyrazolyl)borates Obtained from 5(3)-Isopropyl-3(5)-phenylpyrazole and 3,5-Dimethylpyrazole. European Journal of Inorganic Chemistry, 2003–2003–2475-2485	1.0	15
66	The Ambivalent Bonding of the 3(5)-Isopropylpyrazolyl Moiety in Homo- and Heteroscorpionate Hydrobis(3-R1-5-R2-pyrazolyl)(y-isopropylpyrazolyl)boratocobalt(II) Complexes (y = 3 or 5). European Journal of Inorganic Chemistry, 2003, 2003, 89-93.	1.0	6
67	Complexes of heteroscorpionate trispyrazolylborate ligands. Part IX. X-ray crystallographic studies on cobalt(II) complexes of hydrobis(3-phenyl,5-methylpyrazolyl)(3,5-diethylpyrazolyl)borate. Polyhedron, 2003, 22, 581-586.	1.0	7
68	The X-ray crystallographic structures, spectral and magnetic properties of nickel(II), copper(II) and cobalt(II) complexes with tetra(3-iso-propylpyrazol-1-yl)borate. Polyhedron, 2003, 22, 1645-1652.	1.0	12
69	Complexes of Heteroscorpionate Trispyrazolylborate Ligands. Part 10. Structures and Fluxional Behavior of Rhodium(I) Complexes with Heteroscorpionate Trispyrazolylborate Ligands, Tpâ€~Ââ€~Rh(LL) (LL =) ⁻	Tj ETQ q1 1	0. ℤ& 4314 rg
70	BIS(HYDROXYALKYLATED) DERIVATIVES OF PARABANIC ACID. Heterocyclic Communications, 2002, 8, .	0.6	8
71	Anionic Poly(pyrazolyl)borate Ligands Obtained from 3,5-Dimethylpyrazole and 3,5-Diphenylpyrazole and Their Cobalt(II) Complexes â² X-ray Crystallographic and1H NMR Studies. European Journal of Inorganic Chemistry, 2002, 2002, 754-760.	1.0	17
72	Complexes of heteroscorpionate trispyrazolylborate ligands. Part VI. Carboxylate induced conversion of mono-ligand Tp′M(L) into bis-ligand Tp′2M complexes (M=Co(II) and Cu(II)). Polyhedron, 2002, 21, 2743-2753.	1.0	19

#	Article	IF	CITATIONS
73	Complexes of heteroscorpionate trispyrazolylborate anionic ligands. Part III. X-ray crystallographic and NMR studies on cobalt(II) complexes with tris(pyrazolyl)borate anionic ligands obtained from 3,5-di-methylpyrazole and 3(5)-methyl,5(3)-phenylpyrazole. Polyhedron, 2001, 20, 2551-2558.	1.0	26
74	Complexes of heteroscorpionate trispyrazolylborate anionic ligands. Part V. X-ray crystallographic studies of cobalt(II) complexes with hydrobis(3,5-dimethylpyrazolyl)(3,5-diphenylpyrazolyl)borate and hydrobis(3,5-diphenylpyrazolyl)(3,5-dimethylpyrazolyl)borate ligands. Polyhedron, 2001, 20, 2965-2970.	1.0	16
75	Complexes of heteroscorpionate trispyrazolylborate anionic ligands. Polyhedron, 2001, 20, 237-244.	1.0	15
76	Mass spectrometry-based metabolomic profiling of prostate cancer - a pilot study. Journal of Cancer Metastasis and Treatment, 0, 2019, .	0.5	4