Ying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/713288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. Journal of Hazardous Materials, 2021, 401, 123292.	12.4	241
2	One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration. Chemical Engineering Journal, 2020, 394, 124915.	12.7	152
3	Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Applied Surface Science, 2018, 427, 147-155.	6.1	144
4	Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. Science of the Total Environment, 2021, 771, 145418.	8.0	144
5	Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb(II) scavenging from water: Characterization, kinetics, isotherms and mechanisms. Journal of Hazardous Materials, 2021, 403, 123607.	12.4	139
6	Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresource Technology, 2019, 275, 153-162.	9.6	127
7	Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwave-functionalized cellulose: Kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification. Journal of Hazardous Materials, 2020, 387, 121718.	12.4	127
8	Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: Performance, mechanisms and microbial community evolution. Journal of Hazardous Materials, 2022, 425, 127876.	12.4	109
9	Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover. Biomass and Bioenergy, 2019, 122, 175-182.	5.7	108
10	Ball milling-assisted preparation of N-doped biochar loaded with ferrous sulfide as persulfate activator for phenol degradation: Multiple active sites-triggered radical/non-radical mechanism. Applied Catalysis B: Environmental, 2022, 316, 121639.	20.2	107
11	The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China. Science of the Total Environment, 2015, 506-507, 118-125.	8.0	105
12	Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La(OH)3: Kinetics, isotherms, mechanisms and applications for water and real wastewater. Bioresource Technology, 2021, 319, 124232.	9.6	104
13	Effective lead passivation in soil by bone char/CMC-stabilized FeS composite loading with phosphate-solubilizing bacteria. Journal of Hazardous Materials, 2022, 423, 127043.	12.4	104
14	Applications of functionalized magnetic biochar in environmental remediation: A review. Journal of Hazardous Materials, 2022, 434, 128841.	12.4	104
15	Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil. Chemosphere, 2017, 180, 531-539.	8.2	99
16	Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: Reactivity, radical production and transformation pathway. Environmental Research, 2020, 184, 109260.	7.5	95
17	Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen. Bioresource Technology, 2015, 179, 460-466.	9.6	87
18	Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor. Applied Microbiology and Biotechnology, 2015, 99, 1977-1987.	3.6	87

#	Article	IF	CITATIONS
19	Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: An efficient adsorbent for atrazine removal. Science of the Total Environment, 2017, 607-608, 1391-1399.	8.0	77
20	Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation. Chemical Engineering Journal, 2021, 403, 126309.	12.7	77
21	Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123962.	4.7	75
22	Metabolic ability and gene characteristics of Arthrobacter sp. strain DNS10, the sole atrazine-degrading strain in a consortium isolated from black soil. International Biodeterioration and Biodegradation, 2011, 65, 1140-1144.	3.9	73
23	Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration. Journal of Hazardous Materials, 2020, 400, 123142.	12.4	67
24	Free radicals-triggered reductive and oxidative degradation of highly chlorinated compounds via regulation of heat-activated persulfate by low-molecular-weight organic acids. Applied Catalysis B: Environmental, 2022, 310, 121359.	20.2	66
25	Simultaneous scavenging of Cd(II) and Pb(II) from water by sulfide-modified magnetic pinecone-derived hydrochar. Journal of Cleaner Production, 2022, 341, 130758.	9.3	64
26	The microbiome and functions of black soils are altered by dibutyl phthalate contamination. Applied Soil Ecology, 2016, 99, 51-61.	4.3	62
27	Concurrent elimination and stepwise recovery of Pb(II) and bisphenol A from water using β–cyclodextrin modified magnetic cellulose: adsorption performance and mechanism investigation. Journal of Hazardous Materials, 2022, 432, 128758.	12.4	62
28	Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32. Science of the Total Environment, 2019, 682, 59-69.	8.0	61
29	A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust. Environmental Research, 2019, 172, 561-568.	7.5	60
30	Microwave-assisted synthesis of β-cyclodextrin functionalized celluloses for enhanced removal of Pb(II) from water: Adsorptive performance and mechanism exploration. Science of the Total Environment, 2021, 752, 141854.	8.0	60
31	Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(â¥) and tetracycline adsorption from water. Bioresource Technology, 2021, 340, 125692.	9.6	60
32	One-pot synthesis of porous carbon foam derived from corn straw: atrazine adsorption equilibrium and kinetics. Environmental Science: Nano, 2017, 4, 625-635.	4.3	56
33	Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution, 2022, 298, 118540.	7.5	55
34	Enhanced biodegradation of atrazine by Arthrobacter sp. DNS10 during co-culture with a phosphorus solubilizing bacteria: Enterobacter sp. P1. Ecotoxicology and Environmental Safety, 2019, 172, 159-166.	6.0	53
35	One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine. Chemical Engineering Journal, 2021, 420, 129868.	12.7	52
36	Microwave-assisted one pot synthesis of β-cyclodextrin modified biochar for concurrent removal of Pb(II) and bisphenol a in water. Carbohydrate Polymers, 2020, 250, 117003.	10.2	50

#	Article	IF	CITATIONS
37	One-pot synthesis of Ca-based magnetic hydrochar derived from consecutive hydrothermal and pyrolysis processing of bamboo for high-performance scavenging of Pb(â¡) and tetracycline from water. Bioresource Technology, 2022, 343, 126046.	9.6	49
38	Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. Environmental Science and Pollution Research, 2015, 22, 3477-3488.	5.3	48
39	Effect of di- n -butyl phthalate on root physiology and rhizosphere microbial community of cucumber seedlings. Journal of Hazardous Materials, 2015, 289, 9-17.	12.4	46
40	Metabolism of diethyl phthalate (DEP) and identification of degradation intermediates by Pseudomonas sp. DNE-S1. Ecotoxicology and Environmental Safety, 2019, 173, 411-418.	6.0	46
41	Enzymatic antioxidant defense in resistant plant: Pennisetum americanum (L.) K. Schum during long-term atrazine exposure. Pesticide Biochemistry and Physiology, 2016, 133, 59-66.	3.6	41
42	Microwave-assisted one-pot synthesis of β-cyclodextrin modified biochar for stabilization of Cd and Pb in soil. Journal of Cleaner Production, 2022, 346, 131165.	9.3	41
43	Combined bioremediation of atrazine-contaminated soil by Pennisetum and Arthrobacter sp. strain DNS10. Environmental Science and Pollution Research, 2014, 21, 6234-6238.	5.3	40
44	Application of biochar with functional microorganisms for enhanced atrazine removal and phosphorus utilization. Journal of Cleaner Production, 2020, 257, 120535.	9.3	39
45	A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chemical Engineering Journal, 2022, 431, 133937.	12.7	39
46	Rhodopseudomonas palustris wastewater treatment: Cyhalofop-butyl removal, biochemicals production and mathematical model establishment. Bioresource Technology, 2019, 282, 390-397.	9.6	38
47	The organophosphorus pesticides in soil was degradated by Rhodobacter sphaeroides after wastewater treatment. Biochemical Engineering Journal, 2019, 141, 247-251.	3.6	38
48	Lycopene protects against atrazine-induced hepatic ionic homeostasis disturbance by modulating ion-transporting ATPases. Journal of Nutritional Biochemistry, 2016, 27, 249-256.	4.2	37
49	Investigating the behavior of binding properties between dissolved organic matter (DOM) and Pb(II) during the soil sorption process using parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2D-COS). Environmental Science and Pollution Research, 2017, 24, 25156-25165.	5.3	37
50	Effect of swine biogas slurry application on soil dissolved organic matter (DOM) content and fluorescence characteristics. Ecotoxicology and Environmental Safety, 2019, 184, 109616.	6.0	37
51	Insight into the roles of tightly and loosely bound extracellular polymeric substances on a granular sludge in ammonium nitrogen removal. Bioresource Technology, 2016, 222, 408-412.	9.6	36
52	Development of a novel bio-organic fertilizer for the removal of atrazine in soil. Journal of Environmental Management, 2019, 233, 553-560.	7.8	36
53	Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5. Journal of Hazardous Materials, 2012, 237-238, 376-381.	12.4	35
54	Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. Ecotoxicology and Environmental Safety, 2016, 132, 403-412.	6.0	35

#	Article	IF	CITATIONS
55	Effects of multi-walled carbon nanotubes with various diameters on bacterial cellular membranes: Cytotoxicity and adaptive mechanisms. Chemosphere, 2017, 185, 162-170.	8.2	34
56	Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver. Environmental Pollution, 2020, 257, 113517.	7.5	33
57	Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. Bioresource Technology, 2022, 360, 127407.	9.6	33
58	Nitrate removal by alkali-resistant Pseudomonas sp. XS-18 under aerobic conditions: Performance and mechanism. Bioresource Technology, 2022, 344, 126175.	9.6	32
59	Pyrogallic acid modified nanoscale zero-valent iron efficiently removed Cr(VI) by improving adsorption and electron selectivity. Chemical Engineering Journal, 2022, 443, 136510.	12.7	32
60	Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures. Environmental Science and Pollution Research, 2018, 25, 18528-18539.	5.3	30
61	Metabolic process of di-n-butyl phthalate (DBP) by Enterobacter sp. DNB-S2, isolated from Mollisol region in China. Environmental Pollution, 2019, 255, 113344.	7.5	30
62	Enhanced nitrogen removal in an aerobic granular sequencing batch reactor under low DO concentration: Role of extracellular polymeric substances and microbial community structure. Bioresource Technology, 2019, 289, 121651.	9.6	30
63	Sorption of Pb(II) onto biochar is enhanced through co-sorption of dissolved organic matter. Science of the Total Environment, 2022, 825, 153686.	8.0	30
64	Effects of C/N ratio variation in swine biogas slurry on soil dissolved organic matter: Content and fluorescence characteristics. Ecotoxicology and Environmental Safety, 2021, 209, 111804.	6.0	29
65	Effect of di-n-butyl phthalate (DBP) on the fruit quality of cucumber and the health risk. Environmental Science and Pollution Research, 2016, 23, 24298-24304.	5.3	28
66	Different dissolved organic matter (DOM) characteristics lead to diverse atrazine adsorption traits on the non-rhizosphere and rhizosphere soil of Pennisetum americanum (L.) K. Schum. Chemosphere, 2018, 209, 608-616.	8.2	27
67	Effects of biochars and MWNTs on biodegradation behavior of atrazine by Acinetobacter lwoffii DNS32. Science of the Total Environment, 2017, 577, 54-60.	8.0	26
68	Effects of bok choy on the dissipation of dibutyl phthalate (DBP) in mollisol and its possible mechanisms of biochemistry and microorganisms. Ecotoxicology and Environmental Safety, 2019, 181, 284-291.	6.0	26
69	Effects of humic acid on the biodegradation of di-n-butyl phthalate in mollisol. Journal of Cleaner Production, 2020, 249, 119404.	9.3	26
70	Complete metabolic study by dibutyl phthalate degrading Pseudomonas sp. DNB-S1. Ecotoxicology and Environmental Safety, 2020, 194, 110378.	6.0	26
71	Rapidly degradation of di-(2-ethylhexyl) phthalate by Z-scheme Bi2O3/TiO2@reduced graphene oxide driven by simulated solar radiation. Chemosphere, 2021, 272, 129631.	8.2	26
72	Characterization and mechanism analysis of tylosin biodegradation and simultaneous ammonia nitrogen removal with strain Klebsiella pneumoniae TN-1. Bioresource Technology, 2021, 336, 125342.	9.6	26

#	Article	IF	CITATIONS
73	The enhancement of atrazine sorption and microbial transformation in biochars amended black soils. Chemosphere, 2017, 189, 507-516.	8.2	25
74	Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(â¥) and tetracycline from water. Environmental Pollution, 2022, 306, 119398.	7.5	25
75	Removal of Cd(â;) and anthracene from water by β-cyclodextrin functionalized magnetic hydrochar: Performance, mechanism and recovery. Bioresource Technology, 2021, 337, 125428.	9.6	24
76	Characterization of modified biochars prepared at low pyrolysis temperature as an efficient adsorbent for atrazine removal. Environmental Science and Pollution Research, 2018, 25, 1405-1417.	5.3	23
77	Feasibility of cultivation of Spinibarbus sinensis with coconut oil and its effect on disease resistance (nonspecific immunity, antioxidation and mTOR and NF-kB signaling pathways). Fish and Shellfish Immunology, 2019, 93, 726-731.	3.6	22
78	Effects of diethylphthalate and di-(2-ethyl)hexylphthalate on the physiology and ultrastructure of cucumber seedlings. Environmental Science and Pollution Research, 2014, 21, 1020-1028.	5.3	21
79	A combined system of microwave-functionalized rice husk and poly-aluminium chloride for trace cadmium-contaminated source water purification: Exploration of removal efficiency and mechanism. Journal of Hazardous Materials, 2019, 379, 120804.	12.4	21
80	Efficient scavenging of aqueous Pb(II)/Cd(II) by sulfide-iron decorated biochar: Performance, mechanisms and reusability exploration. Journal of Environmental Chemical Engineering, 2022, 10, 107531.	6.7	21
81	A composite of Ni–Fe–Zn layered double hydroxides/biochar for atrazine removal from aqueous solution. Biochar, 2020, 2, 455-464.	12.6	20
82	Effects of trichloroethylene stress on the microbiological characteristics of Mollisol. Ecotoxicology and Environmental Safety, 2019, 184, 109595.	6.0	18
83	Effects of di-n-butyl phthalate on the physiology and ultrastructure of cucumber seedling roots. Environmental Science and Pollution Research, 2014, 21, 6662-6670.	5.3	17
84	Efficient preparation of P-doped carbon with ultra-high mesoporous ratio from furfural residue for dye removal. Separation and Purification Technology, 2022, 292, 120954.	7.9	17
85	Variation in the Humification Degree of Dissolved Organic Matter from Cattle Manure during Composting as Analyzed by Ultravioletâ€Visible and Fluorescence Spectroscopy. Journal of Environmental Quality, 2017, 46, 1489-1499.	2.0	16
86	Competitive sorption of lead and methylene blue onto black soil and their interaction with dissolved organic matter using two-dimensional correlation analyses. Ecotoxicology and Environmental Safety, 2018, 164, 484-492.	6.0	16
87	How do root exudates of bok choy promote dibutyl phthalate adsorption on mollisol?. Ecotoxicology and Environmental Safety, 2018, 161, 129-136.	6.0	16
88	Anthraquinone-2,6-disulfonate enhanced biodegradation of dibutyl phthalate: Reducing membrane damage and oxidative stress in bacterial degradation. Bioresource Technology, 2020, 302, 122845.	9.6	16
89	Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China. Environmental Pollution, 2020, 263, 114612.	7.5	15
90	The drivers of bacterial community underlying biogeographical pattern in Mollisol area of China. Ecotoxicology and Environmental Safety, 2019, 177, 93-99.	6.0	14

#	Article	IF	CITATIONS
91	Facilitating effect of heavy metals on di(2-ethylhexyl) phthalate adsorption in soil: New evidence from adsorption experiment data and quantum chemical simulation. Science of the Total Environment, 2021, 772, 144980.	8.0	14
92	Di(2-ethylhexyl) phthalate and dibutyl phthalate have a negative competitive effect on the nitrification of black soil. Chemosphere, 2022, 293, 133554.	8.2	14
93	Fabrication and characterization of a hierarchical porous carbon from corn straw–derived hydrochar for atrazine removal: efficiency and interface mechanisms. Environmental Science and Pollution Research, 2019, 26, 30268-30278.	5.3	13
94	Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid producing strain Pseudomonas chlororaphis PAS18. Ecotoxicology and Environmental Safety, 2020, 202, 110854.	6.0	13
95	Influence of humic acid on the trichloroethene degradation by Dehalococcoides-containing consortium. Journal of Hazardous Materials, 2011, 190, 1074-1078.	12.4	12
96	Exogenous Zn2+ enhance the biodegradation of atrazine by regulating the chlorohydrolase gene trzN transcription and membrane permeability of the degrader Arthrobacter sp. DNS10. Chemosphere, 2020, 238, 124594.	8.2	12
97	One-pot synthesis of a novel P-doped ferrihydrite nanoparticles for efficient removal of Pb(â¡) from aqueous solutions: Performance and mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 105721.	6.7	12
98	New insight into chemical changes between dissolved organic matter and environmental nano-CuO pollutants binding experiment using multi-spectroscopic techniques. Journal of Molecular Liquids, 2019, 291, 111278.	4.9	11
99	Physiological responses of Arthrobacter sp. JQ-1Âcell interfaces to co-existed di-(2-ethylhexyl) phthalate (DEHP) and copper. Ecotoxicology and Environmental Safety, 2020, 205, 111163.	6.0	11
100	Monobutyl phthalate (MBP) induces energy metabolism disturbances in the gills of adult zebrafish (Danio rerio). Environmental Pollution, 2020, 266, 115288.	7.5	11
101	The oxidative stress caused by atrazine in root exudation of Pennisetum americanum (L.) K. Schum. Ecotoxicology and Environmental Safety, 2021, 211, 111943.	6.0	11
102	Mechanism for various phytotoxicity of atrazine in soils to soybean: Insights from soil sorption abilities and dissolved organic matter properties. Journal of Environmental Management, 2021, 297, 113220.	7.8	11
103	Synchronization adsorption of Pb(â¡) and Ce(â¢) by biochar supported phosphate-doped ferrihydrite in aqueous solution: Adsorption efficiency and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129230.	4.7	11
104	Interaction between Microbes DNA and Atrazine in Black Soil Analyzed by Spectroscopy. Clean - Soil, Air, Water, 2015, 43, 867-871.	1.1	10
105	Nicosulfuron inhibits atrazine biodegradation by Arthrobacter sp. DNS10:Influencing mechanisms insight from bacteria viability, gene transcription and reactive oxygen species production. Environmental Pollution, 2021, 273, 116517.	7.5	10
106	Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. Journal of Hazardous Materials, 2021, 412, 125243.	12.4	10
107	The biodegradation of carbaryl in soil with Rhodopseudomonas capsulata in wastewater treatment effluent. Journal of Environmental Management, 2019, 249, 109226.	7.8	9
108	Pinecone-derived magnetic porous hydrochar co-activated by KHCO3 and K2FeO4 for Cr(VI) and anthracene removal from water. Environmental Pollution, 2022, 306, 119457.	7.5	9

#	Article	IF	CITATIONS
109	Acclimation of the trichloroethylene-degrading anaerobic granular sludge and the degradation characteristics in an upflow anaerobic sludge blanket reactor. Water Science and Technology, 2014, 69, 120-127.	2.5	7
110	Study on the community structure and function of anaerobic granular sludge under trichloroethylene stress. Ecotoxicology, 2021, 30, 1408-1418.	2.4	7
111	Physiological and molecular responses of pearl millet seedling to atrazine stress. International Journal of Phytoremediation, 2018, 20, 343-351.	3.1	6
112	Effect of <i>Rhodopseudomonas sphaeroides</i> –Treated Wastewater on Yield, Digestive Enzymes, Antioxidants, Nonspecific Immunity, and Intestinal Microbiota of Common Carp. North American Journal of Aquaculture, 2019, 81, 385-398.	1.4	6
113	The bio-mitigation of acetochlor in soil using Rhodopseudomonas capsulata in effluent after wastewater treatment. Journal of Soils and Sediments, 2019, 19, 2927-2933.	3.0	6
114	Trichloroethylene inhibits nitrogen transformation and microbial community structure in Mollisol. Ecotoxicology, 2020, 29, 801-813.	2.4	6
115	Rhodopseudomonas sphaeroidesÂtreating mesosulfuron-methyl waste-water. Environmental Pollution, 2020, 262, 114166.	7.5	6
116	Facile one-step synthesis of biochar supported iron nanoparticles for enhancing Pb(II) scavenging from water: Performance and mechanisms. Journal of Molecular Liquids, 2022, 353, 118815.	4.9	6
117	Analysis of the performance of the efficient di-(2-ethylhexyl) phthalate-degrading bacterium Rhodococcus pyridinovorans DNHP-S2 and associated catabolic pathways. Chemosphere, 2022, 306, 135610.	8.2	6
118	Toxicological sensitivity of <i>Pennisetum americanum</i> (L.) K. Schum to atrazine exposure. International Journal of Phytoremediation, 2018, 20, 635-642.	3.1	5
119	Facile synthesis of highly porous "carbon sponge―with adsorption and co-adsorption behavior of lead ions and atrazine. Environmental Science and Pollution Research, 2018, 25, 18705-18716.	5.3	4
120	Biodegradation of Di-n-butyl phthalate in rhizosphere and growth-promoting effect of Cucumis sativus Linn. by a novel Pseudomonas sp. DNB-S1. Ecotoxicology, 2021, 30, 1454-1464.	2.4	4
121	Bi ₂ O ₃ /TiO ₂ @reduced graphene oxide with enzyme-like properties efficiently inactivates <i>Pseudomonas syringae</i> pv. tomato DC3000 and enhances abiotic stress tolerance in tomato. Environmental Science: Nano, 2022, 9, 118-132.	4.3	3
122	Interference between di(2-ethylhexyl) phthalate and heavy metals (Cd and Cu) in a Mollisol during aging and mobilization. Science of the Total Environment, 2022, 836, 155635.	8.0	3
123	Alleviation of atrazine toxicity to maize seedlings grown in soils with amendment of biochar derived from wheat under different temperatures. Environmental Science and Pollution Research, 2019, 26, 24362-24371.	5.3	2
124	Research on Three Resistant Plants Remediating Atropine Contaminated Soil. Procedia Environmental Sciences, 2012, 12, 238-242.	1.4	1
125	Passivation of lead and cerium in soil facilitated by biochar-supported phosphate-doped ferrihydrite: Mechanisms and microbial community evolution. Journal of Hazardous Materials, 2022, 436, 129090.	12.4	1
126	Leymus chinensis Adapts to Degraded Soil Environments by Changing Metabolic Pathways and Root Exudate Components. Frontiers in Plant Science, 2022, 13, .	3.6	1

#	Article	IF	CITATIONS
127	The removal of butachlor from soil by wastewaterâ€derived <i>Rhodopseudomonas marshes</i> . Soil Use and Management, 2020, 36, 153-156.	4.9	0