Xiaojing Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7132858/publications.pdf

Version: 2024-02-01

394421 610901 1,380 26 19 24 citations g-index h-index papers 26 26 26 1234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning oxygen-containing groups of pyrene for high hydrogen peroxide production selectivity. Applied Catalysis B: Environmental, 2022, 304, 120908.	20.2	27
2	Oxygen Reduction Activity of Bâ†Nâ€Containing Organic Molecule Affected by Asymmetric Regulation. Small, 2022, 18, e2105524.	10.0	8
3	Hierarchically Porous and Defective Carbon Fiber Cathode for Efficient Zn-Air Batteries and Microbial Fuel Cells. Advanced Fiber Materials, 2022, 4, 795-806.	16.1	26
4	Optimizing the oxygen reduction catalytic activity of a bipyridine-based polymer through tuning the molecular weight. Journal of Materials Chemistry A, 2021, 9, 3322-3327.	10.3	6
5	Antidegradation Property of Alginate Materials by Riveting Functionalized Carbon Nanotubes on the Sugar Chain. ACS Omega, 2021, 6, 12813-12819.	3.5	0
6	Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 26483-26488.	13.8	59
7	Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn–air batteries. Materials Advances, 2021, 2, 7932-7938.	5.4	13
8	Luminescent inorganic–organic hybrid with tunable red light emissions by neutral molecule modification. Inorganic Chemistry Communication, 2020, 116, 107909.	3.9	4
9	Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.	12.8	94
10	Double Bâ†N bridged bipyridine-containing polymer acceptors with enhanced electron mobility for all-polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 70-77.	5.9	31
11	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 11369-11373.	13.8	67
12	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie, 2019, 131, 11491-11495.	2.0	14
13	Improving Active Layer Morphology of All-Polymer Solar Cells by Dissolving the Two Polymers Individually. Macromolecules, 2019, 52, 2402-2410.	4.8	49
14	A homopolymer based on double B $\hat{a}\ddot{\gamma}\mu$ N bridged bipyridine as electron acceptor for all-polymer solar cells. Chinese Chemical Letters, 2018, 29, 1343-1346.	9.0	27
15	Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Science China Chemistry, 2018, 61, 1025-1033.	8.2	25
16	Electron-transporting polymers based on a double Bâ†N bridged bipyridine (BNBP) unit. Chemical Communications, 2017, 53, 1649-1652.	4.1	45
17	Organic solar cells based on a polymer acceptor and a small molecule donor with a high open-circuit voltage. Journal of Materials Chemistry C, 2017, 5, 6812-6819.	5.5	24
18	Polymer solar cells with open-circuit voltage of $1.3\mathrm{V}$ using polymer electron acceptor with high LUMO level. Nano Energy, 2017, 32, 216-224.	16.0	50

#	Article	IF	CITATIONS
19	Fine-Tuning LUMO Energy Levels of Conjugated Polymers Containing a Bâ†N Unit. Macromolecules, 2017, 50, 8521-8528.	4.8	46
20	A double Bâ†N bridged bipyridine (BNBP)-based polymer electron acceptor: all-polymer solar cells with a high donor : acceptor blend ratio. Materials Chemistry Frontiers, 2017, 1, 852-858.	5.9	27
21	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 1458-1462.	2.0	54
22	Low-bandgap polymer electron acceptors based on double B ↕N bridged bipyridine (BNBP) and diketopyrrolopyrrole (DPP) units for all-polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 9961-9967.	5.5	46
23	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 1436-1440.	13.8	235
24	A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells. Chemical Science, 2016, 7, 6197-6202.	7.4	98
25	Polymer Acceptor Based on Double Bâ†N Bridged Bipyridine (BNBP) Unit for Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Materials, 2016, 28, 6504-6508.	21.0	298
26	Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen Reduction. Angewandte Chemie, 0, , .	2.0	7