Chenghai Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7132589/publications.pdf Version: 2024-02-01

<u>CHENCHALYANC</u>

#	Article	IF	CITATIONS
1	GIS-based volunteer cotton habitat prediction and plant-level detection with UAV remote sensing. Computers and Electronics in Agriculture, 2022, 193, 106629.	7.7	12
2	Winter Wheat Nitrogen Estimation Based on Ground-Level and UAV-Mounted Sensors. Sensors, 2022, 22, 549.	3.8	9
3	Identification of Abandoned Jujube Fields Using Multi-Temporal High-Resolution Imagery and Machine Learning. Remote Sensing, 2021, 13, 801.	4.0	6
4	Combining UAVâ€RGB highâ€ŧhroughput field phenotyping and genomeâ€wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress. New Phytologist, 2021, 232, 440-455.	7.3	31
5	Retrieval of rapeseed leaf area index using the PROSAIL model with canopy coverage derived from UAV images as a correction parameter. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102373.	2.8	13
6	A Plant-by-Plant Method to Identify and Treat Cotton Root Rot Based on UAV Remote Sensing. Remote Sensing, 2020, 12, 2453.	4.0	18
7	Identification of Cotton Root Rot by Multifeature Selection from Sentinel-2 Images Using Random Forest. Remote Sensing, 2020, 12, 3504.	4.0	17
8	Segmenting Purple Rapeseed Leaves in the Field from UAV RGB Imagery Using Deep Learning as an Auxiliary Means for Nitrogen Stress Detection. Remote Sensing, 2020, 12, 1403.	4.0	29
9	Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example. Engineering, 2020, 6, 528-532.	6.7	65
10	Automatic Estimation of Crop Disease Severity Levels Based on Vegetation Index Normalization. Remote Sensing, 2020, 12, 1930.	4.0	35
11	Evaluation of a UAV-mounted consumer grade camera with different spectral modifications and two handheld spectral sensors for rapeseed growth monitoring: performance and influencing factors. Precision Agriculture, 2020, 21, 1092-1120.	6.0	9
12	Automatic Classification of Cotton Root Rot Disease Based on UAV Remote Sensing. Remote Sensing, 2020, 12, 1310.	4.0	40
13	Assessing the Effect of Real Spatial Resolution of In Situ UAV Multispectral Images on Seedling Rapeseed Growth Monitoring. Remote Sensing, 2020, 12, 1207.	4.0	27
14	Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Scientific Reports, 2018, 8, 2016.	3.3	32
15	Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery. Frontiers in Plant Science, 2018, 9, 1362.	3.6	53
16	Site-Specific Management of Cotton Root Rot Using Airborne and High-Resolution Satellite Imagery and Variable-Rate Technology. Transactions of the ASABE, 2018, 61, 849-858.	1.1	13
17	Evaluation of Sentinel-2A Satellite Imagery for Mapping Cotton Root Rot. Remote Sensing, 2017, 9, 906.	4.0	27
18	Evaluation of an Airborne Remote Sensing Platform Consisting of Two Consumer-Grade Cameras for Crop Identification. Remote Sensing, 2016, 8, 257.	4.0	42

CHENGHAI YANG

#	Article	IF	CITATIONS
19	Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery. Computers and Electronics in Agriculture, 2016, 123, 154-162.	7.7	21
20	Combining fuzzy set theory and nonlinear stretching enhancement for unsupervised classification of cotton root rot. Journal of Applied Remote Sensing, 2015, 9, 096013.	1.3	4
21	Evaluating unsupervised and supervised image classification methods for mapping cotton root rot. Precision Agriculture, 2015, 16, 201-215.	6.0	52
22	Identifying saltcedar with hyperspectral data and support vectormachines. Geocarto International, 2011, 26, 195-209.	3.5	7
23	Linear unmixing of multidate hyperspectral imagery for crop yield estimation. , 2011, , .		3
24	Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot. Biosystems Engineering, 2010, 107, 131-139.	4.3	42