Petros G Koutsoukos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7132571/publications.pdf

Version: 2024-02-01

147 papers 4,728 citations

38 h-index 62 g-index

149 all docs 149 docs citations

149 times ranked 4694 citing authors

#	Article	IF	CITATIONS
1	Pilot-scale hybrid system combining hydrodynamic cavitation and sedimentation for the decolorization of industrial inks and printing ink wastewater. Journal of Environmental Management, 2022, 302, 114108.	7.8	7
2	Water chemistry and its role in industrial water systems. , 2022, , 3-12.		0
3	Treatment of printing ink wastewater using a continuous flow electrocoagulation reactor. Journal of Environmental Management, 2022, 314, 115033.	7.8	12
4	In vitro calcification studies on bioprosthetic and decellularized heart valves under quasi-physiological flow conditions. Bio-Design and Manufacturing, 2021, 4, 10-21.	7.7	4
5	Mineral Scaling in the Presence of Oil–Water Interfaces Combined with the Substrate's Wettability Effect: From Batch to Microfluidic Experiments. Industrial & Engineering Chemistry Research, 2021, 60, 8244-8254.	3.7	2
6	The Protection of Building Materials of Historical Monuments with Nanoparticle Suspensions. Heritage, 2021, 4, 3970-3986.	1.9	2
7	Calcification Assessment of Bioprosthetic Heart Valve Tissues Using an Improved <i>In Vitro </i> Model. IEEE Transactions on Biomedical Engineering, 2020, 67, 2453-2461.	4.2	14
8	Surfaceâ€enhanced Raman scattering as a tool to study cationic surfactants exhibiting low critical micelle concentration. Journal of Raman Spectroscopy, 2020, 51, 452-460.	2.5	10
9	Mineral Scaling in Microchips: Effect of Substrate Wettability on CaCO ₃ Precipitation. Industrial & Description of the Company of the Microchips of the Company	3.7	6
10	Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us?. Journal of Materials Science: Materials in Medicine, 2020, 31, 132.	3.6	23
11	A novel anticalcification treatment strategy for bioprosthetic valves and review of the literature. Journal of Cardiac Surgery, 2019, 34, 895-900.	0.7	5
12	Acinetobacter baumannii Deactivation by Means of DBD-Based Helium Plasma Jet. Plasma, 2019, 2, 77-90.	1.8	22
13	Precipitation of Calcium Carbonate (CaCO ₃) in Water–Monoethylene Glycol Solutions. Industrial & Engineering Chemistry Research, 2019, 58, 4732-4743.	3.7	14
14	Deterioration of Monument Building Materials: Mechanistic Models as Guides for Conservation Strategies. Communications in Computer and Information Science, 2019, , 456-469.	0.5	0
15	Calcitonin as an anticalcification treatment for implantable biological tissues. Journal of Cardiology, 2019, 73, 179-182.	1.9	3
16	Physicochemical characterization of sterilized muds for pharmaceutics/cosmetics applications. Environmental Geochemistry and Health, 2018, 40, 1449-1464.	3.4	12
17	The effect of heparin hydrogel embedding on glutaraldehyde fixed bovine pericardial tissues: Mechanical behavior and anticalcification potential. Journal of Materials Science: Materials in Medicine, 2018, 29, 175.	3.6	8
18	Nucleation and crystal growth of barium sulfate: inhibition in the presence of rigid and flexible triphosphonate additives. CrystEngComm, 2018, 20, 6589-6601.	2.6	16

#	Article	IF	CITATIONS
19	Anticalcification potential of heparin on hydroxyapatite seeds using a constant composition in vitro model. Journal of Crystal Growth, 2018, 498, 399-404.	1.5	1
20	Struvite precipitation and COD reduction in a twoâ€step treatment of olive mill wastewater. Journal of Chemical Technology and Biotechnology, 2018, 93, 730-735.	3.2	7
21	Phosphorus recovery from simulated municipal wastewater (<scp>SMW</scp>) through the crystallization of magnesium ammonium phosphate hexahydrate (<scp>MAP</scp>). Journal of Chemical Technology and Biotechnology, 2017, 92, 2075-2082.	3.2	3
22	Crystal growth of aragonite in the presence of phosphate. Journal of Crystal Growth, 2017, 458, 44-52.	1.5	32
23	Heterogeneous crystallization of calcium hydrogen phosphate anhydrous (monetite). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 125-135.	4.7	12
24	Biological properties of mud extracts derived from various spa resorts. Environmental Geochemistry and Health, 2017, 39, 821-833.	3.4	21
25	Calcification of Hydrophilic Acrylic Intraocular Lenses With a Hydrophobic Surface: Laboratory Analysis of 6 Cases. American Journal of Ophthalmology, 2016, 168, 68-77.	3.3	42
26	Precipitation of Calcium Carbonate in Porous Media in the Presence of <i>n</i> -Dodecane. Crystal Growth and Design, 2016, 16, 6874-6884.	3.0	13
27	Precipitation of sparingly soluble salts in packed sandbeds in the presence of miscible and immiscible organic substances. Crystal Research and Technology, 2016, 51, 167-177.	1.3	7
28	The inhibition of crystal growth of mirabilite in aqueous solutions in the presence of phosphonates. Journal of Crystal Growth, 2016, 436, 92-98.	1.5	6
29	Experimental Investigation of Calcium Carbonate Precipitation and Crystal Growth in One- and Two-Dimensional Porous Media. Crystal Growth and Design, 2016, 16, 359-370.	3.0	28
30	Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 2016, 112, 409-419.	9.3	99
31	Removal of U(VI) from Aquatic Systems, Using Winery By-Products as Biosorbents: Equilibrium, Kinetic, and Speciation Studies. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	14
32	Evaluation of maleic acid based polymers as scale inhibitors and dispersants for industrial water applications. Desalination, 2014, 335, 55-63.	8.2	105
33	Organized Silica Films Generated by Evaporation-Induced Self-Assembly as Hosts for Iron Oxide Nanoparticles. Materials, 2013, 6, 1467-1484.	2.9	6
34	A Combined Coagulation/Flocculation and Membrane Filtration Process for the Treatment of Paint Industry Wastewaters. Industrial & Engineering Chemistry Research, 2012, 51, 15456-15462.	3.7	29
35	Crystal growth of calcium phosphates from aqueous solutions in the presence of strontium. Chemical Engineering Science, 2012, 77, 157-164.	3.8	27
36	Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits. Journal of Materials Science: Materials in Medicine, 2012, 23, 1489-1498.	3.6	17

#	Article	IF	CITATIONS
37	The Calcium Phosphateâ^'Calcium Carbonate System: Growth of Octacalcium Phosphate on Calcium Carbonates. Crystal Growth and Design, 2011, 11, 1683-1688.	3.0	20
38	Calcite Reinforced Silica–Silica Joints in the Biocomposite Skeleton of Deepâ€Sea Glass Sponges. Advanced Functional Materials, 2011, 21, 3473-3481.	14.9	43
39	Sand consolidation with calcium phosphate–polyelectrolyte composites. Journal of Colloid and Interface Science, 2011, 363, 145-156.	9.4	13
40	Adsorption of atrazine from aqueous electrolyte solutions on humic acid and silica. Journal of Colloid and Interface Science, 2011, 356, 277-285.	9.4	37
41	In Vivo Calcification of Glutaraldehyde-Fixed Cardiac Valve and Pericardium of Phoca groenlandica. ASAIO Journal, 2011, 57, 328-332.	1.6	7
42	Novel composites materials from functionalized polymers and silver coated titanium oxide capable for calcium phosphate induction, control of orthopedic biofilm infections: an "in vitro―study. Journal of Materials Science: Materials in Medicine, 2010, 21, 2201-2211.	3.6	14
43	Spontaneous precipitation of calcium silicate hydrate in aqueous solutions. Crystal Research and Technology, 2010, 45, 39-47.	1.3	17
44	Crystal Growth and Dissolution of Calcite in the Presence of Fluoride Ions: An Atomic Force Microscopy Study. Crystal Growth and Design, 2010, 10, 60-69.	3.0	30
45	Modern Views on Desilicification: Biosilica and Abiotic Silica Dissolution in Natural and Artificial Environments. Chemical Reviews, 2010, 110, 4656-4689.	47.7	215
46	Development of a New Combined Test Setup for Accelerated Dynamic pH-Controlled <i>in vitro</i> Calcification of Porcine Heart Valves. International Journal of Artificial Organs, 2009, 32, 794-801.	1.4	8
47	Incorporation of Mg2+, Sr2+, Ba2+ and Zn2+ into aragonite and comparison with calcite. Journal of Mathematical Chemistry, 2009, 46, 484-491.	1.5	25
48	Application of Anodic Stripping Voltammetry for Zinc, Copper, and Cadmium Quantification in the Aqueous Humor: Implications of Pseudoexfoliation Syndrome. Biological Trace Element Research, 2009, 132, 9-18.	3.5	11
49	Controlled Precipitation of Sparingly Soluble Phosphate Salts Using Enzymes. II. Precipitation of Struvite. Crystal Growth and Design, 2009, 9, 4642-4652.	3.0	6
50	Controlled Precipitation of Sparingly Soluble Phosphate Salts Using Enzymes. I. Controlled Development of Solution Supersaturation in Situ. Crystal Growth and Design, 2008, 8, 1390-1398.	3.0	7
51	An Atomic Force Microscopy study of the growth of calcite in the presence of sodium sulfate. Chemical Geology, 2008, 253, 243-251.	3.3	56
52	Macro- to nanoscale study of the effect of aqueous sulphate on calcite growth. Mineralogical Magazine, 2008, 72, 141-144.	1.4	2
53	Membrane Filtration of Olive Mill Wastewater and Exploitation of Its Fractions. Water Environment Research, 2007, 79, 421-429.	2.7	62
54	Precipitation of Calcium Phosphate from Simulated Milk Ultrafiltrate Solutions. Crystal Growth and Design, 2007, 7, 25-29.	3.0	37

#	Article	IF	Citations
55	The Effect of Citrate and Phosphocitrate On Struvite Spontaneous Precipitation. Crystal Growth and Design, 2007, 7, 2705-2712.	3.0	52
56	Solubility of salts in water: Key issue for crystal growth and dissolution processes. Pure and Applied Chemistry, 2007, 79, 825-850.	1.9	29
57	Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. Journal of Colloid and Interface Science, 2007, 308, 421-428.	9.4	105
58	The Interaction of Diphosphonates with Calcitic Surfaces:Â Understanding the Inhibition Activity in Marble Dissolution. Langmuir, 2006, 22, 2074-2081.	3.5	18
59	Calcium Phosphate Overgrowth on Silicate Sand. Crystal Growth and Design, 2006, 6, 675-683.	3.0	11
60	In Vitro Evaluation for Potential Calcification of Biomaterials Used for Staple Line Reinforcement in Lung Surgery. Experimental Biology and Medicine, 2006, 231, 1712-1717.	2.4	5
61	Adsorption of atrazine on soils: Model study. Journal of Colloid and Interface Science, 2006, 299, 88-94.	9.4	56
62	Calcium sulfate precipitation in the presence of water-soluble polymers. Journal of Colloid and Interface Science, 2006, 303, 164-170.	9.4	64
63	Spontaneous Precipitation of Struvite from Synthetic Wastewater Solutions. Crystal Growth and Design, 2005, 5, 489-496.	3.0	94
64	Inorganic coatings for the protection of marble surfaces from deterioration. Chemical Industry and Chemical Engineering Quarterly, 2005, 11, 161-168.	0.7	2
65	Screening biomaterials with a new in vitro method for potential calcification: Porcine aortic valves and bovine pericardium. Journal of Materials Science: Materials in Medicine, 2004, 15, 699-704.	3.6	19
66	Study of Copper Sulfide Crystallization in PEOâ^'SDS Solutions. Langmuir, 2004, 20, 5605-5612.	3.5	22
67	Assessment of Encrustations on Polyurethane Ureteral Stents. Journal of Endourology, 2004, 18, 550-556.	2.1	21
68	Kinetics of dissolution of powdered Pentelic marble in undersaturated solutions: the role of particle characteristics. Journal of Colloid and Interface Science, 2003, 259, 287-292.	9.4	1
69	The Calcitic Marble/Water Interface:Â Kinetics of Dissolution and Inhibition with Potential Implications in Stone Conservation. Langmuir, 2003, 19, 5691-5699.	3.5	23
70	Variability of Dissolution Rates at Constant Undersaturation. Journal of Colloid and Interface Science, 2002, 253, 185-189.	9.4	4
71	Functionalization of synthetic polymers for potential use as biomaterials: selective growth of hydroxyapatite on sulphonated polysulphone. Biomaterials, 2002, 23, 947-953.	11.4	16
72	Physicochemical and microscopical study of calcific deposits from natural and bioprosthetic heart valves. Comparison and implications for mineralization mechanism. Journal of Materials Science: Materials in Medicine, 2002, 13, 885-889.	3.6	57

#	Article	IF	Citations
73	Model Studies of the Effect of Orthophospho-l-serine on Biological Mineralization. Langmuir, 2001, 17, 866-872.	3.5	19
74	The 14th Conference of the European Colloid and Interface Society. Applied Rheology, 2001, 11, 42-42.	5.2	0
75	Model Studies on the Interaction of Amino Acids with Biominerals: The Effect of L-Serine at the Hydroxyapatite–Water Interface. Journal of Colloid and Interface Science, 2001, 236, 260-265.	9.4	42
76	Dissolution Effects on Specific Surface Area, Particle Size, and Porosity of Pentelic Marble. Journal of Colloid and Interface Science, 2001, 239, 483-488.	9.4	12
77	Encrustation of a Metal Alloy Urinary Stent: A Mechanistic Investigation. European Urology, 2000, 38, 144-150.	1.9	1
78	Sandbed Consolidation with Mineral Precipitation. Journal of Colloid and Interface Science, 2000, 232, 326-339.	9.4	23
79	Spontaneous precipitation of struvite from aqueous solutions. Journal of Crystal Growth, 2000, 213, 381-388.	1.5	271
80	Dissolution of Pentelic Marble at Alkaline pH. Langmuir, 2000, 16, 7263-7267.	3.5	8
81	Wettability of CaCO3 surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157, 333-340.	4.7	25
82	The Overgrowth of Calcium Carbonate on Poly(vinyl chloride-co-vinyl acetate-co-maleic acid). Langmuir, 1999, 15, 8322-8327.	3.5	183
83	Calculation of Zeta Potential from Electrokinetic Measurements on Titania Plugs. Journal of Colloid and Interface Science, 1999, 214, 85-90.	9.4	11
84	Physicochemical Characteristics of Mixed Copperâ^'Cadmium Sulfides Prepared by Coprecipitation. Langmuir, 1999, 15, 8018-8024.	3.5	8
85	Study of the electrochemical behaviour of the 7075 aluminum alloy in the presence of sodium oxalate. Corrosion Science, 1999, 41, 941-957.	6.6	24
86	Properties of Cu(II) and Ni(II) Sulfides Prepared by Coprecipitation in Aqueous Solution. Langmuir, 1999, 15, 7940-7946.	3.5	4
87	Formation of Calcium Phosphates in Aqueous Solutions in the Presence of Carbonate Ions. Langmuir, 1999, 15, 6557-6562.	3.5	51
88	Role of Temperature in the Spontaneous Precipitation of Calcium Sulfate Dihydrate. Langmuir, 1999, 15, 1534-1540.	3.5	89
89	The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth, 1998, 191, 783-790.	1.5	216
90	Kinetics of calcium sulfate formation in aqueous media: effect of organophosphorus compounds. Journal of Crystal Growth, 1998, 193, 156-163.	1.5	55

#	Article	IF	CITATIONS
91	Preparation and Characterization of Manganese Oxidic Mesoporous Particles Obtained via the Trinuclear [Mn3O(CH3COO)6(pyr)3]ClO4Complex. Journal of Colloid and Interface Science, 1998, 202, 301-312.	9.4	12
92	Kinetics of Precipitation of Calcium Carbonate in Alkaline pH at Constant Supersaturation. Spontaneous and Seeded Growth. Journal of Physical Chemistry B, 1998, 102, 6679-6684.	2.6	197
93	Crystal Growth of Pyrite in Aqueous Solutions. Inhibition by Organophosphorus Compounds. Langmuir, 1998, 14, 1250-1255.	3 . 5	52
94	Preparation and Characterization of Cu(II), Zn(II) Sulfides Obtained by Spontaneous Precipitation in Electrolyte Solutions. Langmuir, 1998, 14, 5298-5304.	3.5	8
95	Preparation and characterization of anatase powders. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 295-300.	1.7	38
96	Electronic Properties of Passive Films Grown on Al 7075 in Solutions Containing Oxalate and Chromate. Corrosion, 1997, 53, 562-571.	1.1	18
97	Quantitative Analysis of Sulfated Calcium Carbonates Using Raman Spectroscopy and X-ray Powder Diffraction. Analyst, The, 1997, 122, 33-38.	3.5	39
98	Morphology and Structure of CaCO3 Scale Layers Formed under Isothermal Flow Conditions. Langmuir, 1997, 13, 2873-2879.	3 . 5	54
99	Use of Raman Spectroscopy for the Quantitative Analysis of Calcium Oxalate Hydrates: Application for the Analysis of Urinary Stones. Applied Spectroscopy, 1997, 51, 64-67.	2.2	41
100	Urinary Stone Layer Analysis of Mineral Components by Raman Spectroscopy, IR Spectroscopy, and X-ray Powder Diffraction: A Comparative Study. Applied Spectroscopy, 1997, 51, 1205-1209.	2.2	24
101	Raman spectroscopy: A tool for the quantitative analysis of mineral components of solid mixtures. The case of calcium oxalate monohydrate and hydroxyapatite. Vibrational Spectroscopy, 1997, 15, 53-60.	2.2	35
102	Model experimental system for investigation of heart valve calcification vitro., 1997, 38, 183-190.		29
103	Nucleation kinetics of $\hat{l}\mu$ -caprolactam melts in the presence of water impurity. Journal of Crystal Growth, 1997, 171, 538-542.	1.5	4
104	Calcium carbonate deposit formation under isothermal conditions. Canadian Journal of Chemical Engineering, 1996, 74, 911-919.	1.7	58
105	Precipitation of strontium sulfate in aqueous solutions at 25°C. Journal of Crystal Growth, 1995, 155, 240-246.	1.5	19
106	Quantitative analysis of impurities in ÃŽÂμ-caprolactam by Raman spectroscopy. Analyst, The, 1995, 120, 347-350.	3 . 5	5
107	Sol-Gel Derived TiO2 Microemulsion Gels and Coatings. Langmuir, 1994, 10, 1684-1689.	3.5	51
108	The importance of the solution pH in electrochemical studies of aluminum in aqueous media containing chloride. Corrosion Science, 1994, 36, 1011-1025.	6.6	21

#	Article	IF	Citations
109	The use of radioanalytical methods in nucleation and crystal growth studies. The barium sulphate system. Applied Radiation and Isotopes, 1993, 44, 894-896.	1.5	3
110	The crystallization of calcium carbonate in artificial seawater; role of the substrate. Journal of Crystal Growth, 1993, 133, 13-22.	1.5	46
111	Radioanalytical monitoring of the formation of barium sulfate in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 1993, 173, 23-36.	1.5	1
112	Inhibition of hydroxyapatite formation in aqueous solutions by zinc and 1,2-dihydroxy-1,2-bis(dihydroxyphosphonyl)ethane. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 965.	1.7	25
113	Unsupported molybdena catalysts: precipitation, characterization and catalytic activity. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3645.	1.7	6
114	The precipitation of calcium carbonate in artificial seawater at sustained supersaturation. Environmental Technology (United Kingdom), 1992, 13, 73-80.	2.2	21
115	Spontaneous precipitation of barium sulfate in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3063.	1.7	11
116	Mechanism of adsorption of cobalt(2+) and nickel(2+) ions on the "pure and fluorinated .gammaalumina/electrolyte solution" interface. Langmuir, 1992, 8, 1736-1743.	3.5	46
117	The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds. Journal of Colloid and Interface Science, 1992, 153, 537-551.	9.4	119
118	Crystallization of hydroxyapatite on polymers. Langmuir, 1991, 7, 1822-1826.	3.5	105
119	Effect of various bis(sulfonamides) on the crystal growth of hydroxyapatite. Langmuir, 1991, 7, 1542-1545.	3.5	13
120	Regulation of the sorptive capacity of oxides used as catalyst carriers. Colloids and Surfaces, 1991, 55, 297-308.	0.9	8
121	The growth of sparingly soluble salts on polymeric substrates. Colloids and Surfaces, 1991, 53, 197-208.	0.9	21
122	The precipitation of calcium carbonate in aqueous solutions. Colloids and Surfaces, 1991, 53, 241-255.	0.9	66
123	Fluorinated hydrotreatment catalysts: Promotion of the catalytic activity of unsupported MoS2 by doping with Fâ^' ions. Reaction Kinetics and Catalysis Letters, 1991, 45, 277-281.	0.6	5
124	Spontaneous precipitation of calcium sulfate at conditions of sustained supersaturation. Journal of Colloid and Interface Science, 1991, 143, 299-308.	9.4	38
125	Calcium carbonate scale formation and prevention in a flow-through system at various temperatures. Desalination, 1990, 78, 403-416.	8.2	35
126	Phosphate adsorption at the porous glass/water and SiO2/water interfaces. Journal of Colloid and Interface Science, 1990, 134, 299-304.	9.4	14

#	Article	IF	CITATIONS
127	The precipitation of cadmium sulphide in aqueous solutions. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 973.	1.7	5
128	In vitro calcification: effect of molecular variables of the phospholipid molecule. Langmuir, 1990, 6, 535-538.	3.5	17
129	Crystal growth of polycrystalline .alphacadmium sulfide on conducting polymers. Langmuir, 1990, 6, 1356-1359.	3.5	12
130	An inexpensive device for the measurements of particle size distribution. Journal of Chemical Education, 1990, 67, 356.	2.3	1
131	Precipitation of calcium sulfate dihydrate at constant calcium activity. Journal of Crystal Growth, 1989, 98, 480-486.	1.5	38
132	Calcium Carbonate Scale Formation on Heated Metal Surfaces. Geothermics, 1989, 18, 83-88.	3.4	31
133	The crystallization of vaterite on cholesterol. Journal of Colloid and Interface Science, 1989, 127, 273-280.	9.4	42
134	The effect of magnetic fields on calcium carbonate scale formation. Journal of Crystal Growth, 1989, 96, 802-806.	1.5	32
135	The growth of calcium phosphate on ceramic surfaces. Journal of Materials Science, 1989, 24, 999-1004.	3.7	14
136	Effect of fatty acyl and cation content of cardiolipins on in vitro calcification. Langmuir, 1989, 5, 157-160.	3.5	25
137	The crystallization of calcium carbonate on polymeric substrates. Journal of Crystal Growth, 1988, 89, 287-294.	1.5	80
138	Crystallization of calcite on collagen type I. Langmuir, 1988, 4, 907-910.	3.5	38
139	Precipitation of calcium carbonate in aqueous solutions in the presence of oxalate anions. Langmuir, 1988, 4, 855-861.	3.5	47
140	The crystallization of calcite in the presence of orthophosphate. Journal of Colloid and Interface Science, 1987, 116, 423-430.	9.4	92
141	Determination of the point of zero charge, surface acidity constants, and relative concentration of the charged surface groups of \hat{l}^3 -aluminas used as carriers. Langmuir, 1986, 2, 281-283.	3.5	32
142	The Remineralization of Fluoride-treated Bovine Enamel Surfaces. Journal of Dental Research, 1982, 61, 1094-1098.	5.2	4
143	The Kinetics of Mineralization of Human Dentin in vitro. Journal of Dental Research, 1981, 60, 1922-1928.	5.2	14
144	The Mineralization of Enamel Surfaces. A Constant Composition Kinetics Study. Journal of Dental Research, 1981, 60, 1783-1792.	5. 2	14

#	Article	IF	CITATIONS
145	Epitaxial considerations in urinary stone formation. II. The oxalate-phosphate system. Investigative Urology, 1981, 18, 358-63.	0.2	13
146	Epitaxial considerations in urinary stone formation. I. The urate-oxalate-phosphate system. Investigative Urology, 1980, 18, 178-84.	0.2	6
147	Application of Thermally Treated Sewage Sludge in Blended Cements. Advanced Materials Research, 0, 905, 191-194.	0.3	3