Abdollah Abbasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/713243/publications.pdf

Version: 2024-02-01

1307594 1281871 17 132 7 11 citations g-index h-index papers 17 17 17 61 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Novel Deep Gate LDMOS Structure Using Double P-Trench to Improve the Breakdown Voltage and the On-State Resistance. Silicon, 2022, 14, 597-602.	3.3	6
2	A Novel Nanoscale SOI MOSFET by Using a P-N Junction and an Electrically Hole Free Region to Improve the Electrical Characteristics. Silicon, 2022, 14, 5905-5912.	3.3	1
3	Dual P+-Wire Double-Gate Junctionless MOSFET with 10-nm Regime for Low Power Applications. Journal of Electronic Materials, 2022, 51, 2083.	2.2	1
4	Enhanced performance of Graphene/AlGaAs/GaAs heterostructure Schottky solar cell using AlGaAs drainage. Journal of Materials Science: Materials in Electronics, 2022, 33, 4617-4627.	2.2	4
5	Performance Enhancement of Asymmetrical Double Gate Junctionless CMOS Inverter With 3-nm Critical Feature Size Using Charge Sheet. IEEE Journal of the Electron Devices Society, 2022, 10, 334-340.	2.1	1
6	Improvement of Nanoscale SOI MOSFET Heating Effects by Vertical Gaussian Drain-Source Doping Region. Silicon, 2021, 13, 645-651.	3.3	12
7	Improvement of CIGS solar cell efficiency with graded bandgap absorber layer. Journal of Materials Science: Materials in Electronics, 2021, 32, 2041-2050.	2.2	17
8	Reducing the Drain Leakage Current in a Double-Gate Junctionless MOSFET Using the Electron Screening Effect. Journal of Electronic Materials, 2021, 50, 2605-2617.	2.2	3
9	Anode resistance reduction of dye-sensitized solar cells using graphene for efficiency improvement. Optical and Quantum Electronics, $2021, 53, 1$.	3.3	2
10	Modeling of GaAsxP1-x/CIGS tandem solar cells under stress conditions. Superlattices and Microstructures, 2021, 153, 106860.	3.1	13
11	A Simulation Study of Junctionless Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor with Symmetrical Side Gates. Silicon, 2020, 12, 1593-1602.	3.3	22
12	Using energy band engineering to improve heterojunction solar cells efficiency. Optik, 2020, 218, 165243.	2.9	2
13	Improvement the Breakdown Voltage and the On-resistance in the LDMOSFET: Double Buried Metal Layers Structure. Silicon, 2020, 13, 2157.	3.3	2
14	Efficiency improvement of graphene/silicon Schottky junction solar cell using diffraction gratings. Optical and Quantum Electronics, 2020, 52, 1 .	3.3	7
15	Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously. Journal of Materials Science: Materials in Electronics, 2020, 31, 11527-11537.	2.2	14
16	A silicon/indium arsenide source structure to suppress the parasitic bipolar-induced breakdown effect in SOI MOSFETs. Materials Science in Semiconductor Processing, 2013, 16, 1821-1827.	4.0	11
17	Novel partially depleted SOI MOSFET for suppression floating-body effect: An embedded JFET structure. Superlattices and Microstructures, 2012, 52, 552-559.	3.1	14