Frederic Bourgaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7132418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Vetiver Volatile Compound Production under Aeroponic-Grown Conditions for the Perfume Industry. Molecules, 2022, 27, 1942.	1.7	2
2	Anti-Inflammatory Activity of Bryophytes Extracts in LPS-Stimulated RAW264.7 Murine Macrophages. Molecules, 2022, 27, 1940.	1.7	14
3	Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiological Research, 2021, 243, 126650.	2.5	11
4	Identification and Quantification of Coumarins by UHPLC-MS in Arabidopsis thaliana Natural Populations. Molecules, 2021, 26, 1804.	1.7	9
5	Parallel evolution of UbiA superfamily proteins into aromatic <i>O</i> -prenyltransferases in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
6	Natural Products from Bryophytes: From Basic Biology to Biotechnological Applications. Critical Reviews in Plant Sciences, 2021, 40, 191-217.	2.7	33
7	Collagenase and Tyrosinase Inhibitory Effect of Isolated Constituents from the Moss Polytrichum formosum. Plants, 2021, 10, 1271.	1.6	10
8	Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants. New Phytologist, 2020, 225, 2166-2182.	3.5	30
9	Convergent evolution leading to the appearance of furanocoumarins in citrus plants. Plant Science, 2020, 292, 110392.	1.7	17
10	A GDSL lipase-like from Ipomoea batatas catalyzes efficient production of 3,5-diCQA when expressed in Pichia pastoris. Communications Biology, 2020, 3, 673.	2.0	8
11	In vitro plant regeneration and Agrobacterium-mediated genetic transformation of a carnivorous plant, Nepenthes mirabilis. Scientific Reports, 2020, 10, 17482.	1.6	20
12	Plant Milking Technology—An Innovative and Sustainable Process to Produce Highly Active Extracts from Plant Roots. Molecules, 2020, 25, 4162.	1.7	5
13	Assessing Carnivorous Plants for the Production of Recombinant Proteins. Frontiers in Plant Science, 2019, 10, 793.	1.7	10
14	Isolation of Artemisia capillaris membrane-bound di-prenyltransferase for phenylpropanoids and redesign of artepillin C in yeast. Communications Biology, 2019, 2, 384.	2.0	15
15	Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of Experimental Botany, 2018, 69, 1735-1748.	2.4	86
16	Nepenthes: State of the art of an inspiring plant for biotechnologists. Journal of Biotechnology, 2018, 265, 109-115.	1.9	36
17	Datura innoxia plants hydroponically-inoculated with Agrobacterium rhizogenes display an enhanced growth and alkaloid metabolism. Plant Science, 2018, 277, 166-176.	1.7	3
18	The CYP71AZ P450 Subfamily: A Driving Factor for the Diversification of Coumarin Biosynthesis in Apjaceous Plants, Frontiers in Plant Science, 2018, 9, 820	1.7	24

FREDERIC BOURGAUD

#	Article	IF	CITATIONS
19	A bacterial artificial chromosome (<scp>BAC</scp>) genomic approach reveals partial clustering of the furanocoumarin pathway genes in parsnip. Plant Journal, 2017, 89, 1119-1132.	2.8	21
20	Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis. Archives of Virology, 2016, 161, 2273-2278.	0.9	6
21	Molecular evolution of parsnip (<i>Pastinaca sativa</i>) membraneâ€bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis. New Phytologist, 2016, 211, 332-344.	3.5	59
22	Proteome analysis of digestive fluids in <i>Nepenthes</i> pitchers. Annals of Botany, 2016, 117, 479-495.	1.4	42
23	Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis. Plant Science, 2015, 239, 128-136.	1.7	36
24	Mapping the genetic and tissular diversity of 64 phenolic compounds in Citrus species using a UPLC–MS approach. Annals of Botany, 2015, 115, 861-877.	1.4	39
25	Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily. BMC Evolutionary Biology, 2015, 15, 122.	3.2	43
26	The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways. PLoS ONE, 2015, 10, e0142757.	1.1	104
27	Recent Advances in Molecular Genetics of Furanocoumarin Synthesis in Higher Plants. , 2014, , 363-375.		9
28	Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Science, 2014, 223, 59-68.	1.7	55
29	A coumarinâ€specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley. Plant Journal, 2014, 77, 627-638.	2.8	88
30	Molecular Cloning and Characterization of a Geranyl Diphosphate-Specific Aromatic Prenyltransferase from Lemon Â. Plant Physiology, 2014, 166, 80-90.	2.3	38
31	Coumarin and Furanocoumarin Quantitation in Citrus Peel via Ultraperformance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS). Journal of Agricultural and Food Chemistry, 2013, 61, 10677-10684.	2.4	104
32	From Bioreactor to Entire Plants. Advances in Botanical Research, 2013, 68, 205-232.	0.5	6
33	Antioxidant and antiglycation properties of Hydnora johannis roots. South African Journal of Botany, 2013, 84, 124-127.	1.2	35
34	Coexpression of CPR from Various Origins Enhances Biotransformation Activity of Human CYPs in S. pombe. Applied Biochemistry and Biotechnology, 2013, 170, 1751-1766.	1.4	23
35	A simple SDSâ€₽AGE protein pattern from pitcher secretions as a new tool to distinguish Nepenthes species (Nepenthaceae). American Journal of Botany, 2013, 100, 2478-2484.	0.8	17
36	CYP98A22, a phenolic ester 3'-hydroxylase specialized in the synthesis of chlorogenic acid, as a new tool for enhancing the furanocoumarin concentration in Ruta graveolens. BMC Plant Biology, 2012, 12, 152.	1.6	33

FREDERIC BOURGAUD

#	Article	IF	CITATIONS
37	A Rapid and Efficient Method for Isolating High Quality DNA from Leaves of Carnivorous Plants from the Drosera Genus. Molecular Biotechnology, 2012, 51, 247-253.	1.3	7
38	Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry, 2012, 77, 119-128.	1.4	64
39	A 2â€oxoglutarateâ€dependent dioxygenase from <i>Ruta graveolens</i> L. exhibits <i>pâ€</i> coumaroyl CoA 2′â€hydroxylase activity (C2′H): a missing step in the synthesis of umbelliferone in plants. Plant Journal, 2012, 70, 460-470.	2.8	87
40	Organâ€specific responses of tomato growth and phenolic metabolism to nitrate limitation. Plant Biology, 2012, 14, 760-769.	1.8	39
41	Extraction of Coumarins from Leaves, Petioles, Stems and Roots of Ruta graveolens and Nicotiana benthamiana. Bio-protocol, 2012, 2, .	0.2	0
42	Impact of Temporary Nitrogen Deprivation on Tomato Leaf Phenolics. International Journal of Molecular Sciences, 2011, 12, 7971-7981.	1.8	19
43	Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biology, 2010, 10, 21.	1.6	73
44	Tropane alkaloid profiling of hydroponic <i>Datura innoxia</i> mill. Plants inoculated with <i>Agrobacterium rhizogenes</i> . Phytochemical Analysis, 2010, 21, 118-127.	1.2	26
45	Isolation and Functional Characterization of CYP71AJ4 Encoding for the First P450 Monooxygenase of Angular Furanocoumarin Biosynthesis. Journal of Biological Chemistry, 2009, 284, 4776-4785.	1.6	70
46	The â€~trade-off' between synthesis of primary and secondary compounds in young tomato leaves is altered by nitrate nutrition: experimental evidence and model consistency. Journal of Experimental Botany, 2009, 60, 4301-4314.	2.4	78
47	The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biology, 2009, 9, 30.	1.6	91
48	Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2009, 57, 4112-4123.	2.4	169
49	Agrobacterium-Mediated Transformation of Ruta graveolens L. Methods in Molecular Biology, 2009, 547, 235-248.	0.4	2
50	Production of phenylpropanoid compounds by recombinant microorganisms expressing plant-specific biosynthesis genes. Process Biochemistry, 2008, 43, 463-479.	1.8	31
51	How Does Tomato Quality (Sugar, Acid, and Nutritional Quality) Vary with Ripening Stage, Temperature, and Irradiance?. Journal of Agricultural and Food Chemistry, 2008, 56, 1241-1250.	2.4	266
52	Molecular Cloning and Functional Characterization of Psoralen Synthase, the First Committed Monooxygenase of Furanocoumarin Biosynthesis. Journal of Biological Chemistry, 2007, 282, 542-554.	1.6	91
53	Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biology, 2007, 7, 14.	1.6	78
54	Hairy root and tissue cultures of Leucojum aestivum L.—relationships to galanthamine content. Phytochemistry Reviews, 2007, 6, 137-141.	3.1	39

FREDERIC BOURGAUD

#	Article	IF	CITATIONS
55	Testing of Outstanding Individuals of <i>Thlaspi Caerulescens</i> for Cadmium Phytoextraction. International Journal of Phytoremediation, 2006, 8, 339-357.	1.7	22
56	Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochemistry Reviews, 2006, 5, 293-308.	3.1	313
57	Genetic transformation of the medicinal plant Ruta graveolens L. by an Agrobacterium tumefaciens-mediated method. Plant Science, 2005, 168, 883-888.	1.7	20
58	Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant—Ruta graveolens—exhibiting low sensitivity to psoralen inactivation. Archives of Biochemistry and Biophysics, 2004, 422, 71-80.	1.4	40
59	Les plantes, sources d'acides gras essentiels omégaÂ3. Oleagineux Corps Gras Lipides, 2004, 11, 106-111.	0.2	1
60	Establishment of a co-culture of Ammi majus L. and Ruta graveolens L. for the synthesis of furanocoumarins. Plant Science, 2003, 165, 1315-1319.	1.7	34
61	Hydroponic combined with natural or forced root permeabilization: a promising technique for plant secondary metabolite production. Plant Science, 2002, 163, 723-732.	1.7	25
62	Ruta graveolens L.: a promising species for the production of furanocoumarins. Plant Science, 2001, 161, 189-199.	1.7	74
63	Production of plant secondary metabolites: a historical perspective. Plant Science, 2001, 161, 839-851.	1.7	888
64	Title is missing!. Plant Cell, Tissue and Organ Culture, 2000, 62, 11-19.	1.2	38
65	Cultivation of rue (<i>Ruta graveolens</i> L., Rutaceae) for the production of furanocoumarins of therapeutic value. Canadian Journal of Botany, 2000, 78, 1326-1335.	1.2	9
66	Cultivation of rue (<i>Ruta graveolens</i> L., Rutaceae) for the production of furanocoumarins of therapeutic value. Canadian Journal of Botany, 2000, 78, 1326-1335.	1.2	8
67	Production of flavonoids by Psoralea hairy root cultures. Plant Cell, Tissue and Organ Culture, 1999, 56, 96-103.	1.2	34
68	Production of daidzein by callus cultures of Psoralea species and comparison with plants. Plant Cell, Tissue and Organ Culture, 1998, 53, 35-40.	1.2	32
69	Quantification of Daidzein and Furanocoumarin Conjugates ofPsoralea cinerea L. (Leguminosae). Phytochemical Analysis, 1997, 8, 27-31.	1.2	15
70	Development of an enzyme immunoassay to detect and quantify psoralen and bergapten in plants. Phytochemical Analysis, 1995, 6, 306-312.	1.2	1
71	Extraction of coumarins from plant material (Leguminosae). Phytochemical Analysis, 1994, 5, 127-132.	1.2	46
72	A selective photobiological assay to detect and quantify psoralen inPsoralea plants (Leguminosae). Phytochemical Analysis, 1994, 5, 315-318.	1.2	4

#	Article	IF	CITATIONS
73	Establishment of hairy root cultures of Psoralea species. Plant Cell Reports, 1992, 11, 424-7.	2.8	48
74	Study of two pharmaceutically useful Psoralea (Leguminosae) species : influence of inoculation on growth, grain and dry matter yield. Agronomy for Sustainable Development, 1990, 10, 1-8.	0.8	11