Haydn M Prosser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7131924/publications.pdf

Version: 2024-02-01

		759233	996975
19	1,597	12	15
papers	citations	h-index	g-index
19	19	19	3349
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Hearing impairment due to <i>Mir$183/96/182$</i> mutations suggests both loss-of-function and gain-of-function effects. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	14
2	Loss of miR-183/96 Alters Synaptic Strength via Presynaptic and Postsynaptic Mechanisms at a Central Synapse. Journal of Neuroscience, 2021, 41, 6796-6811.	3.6	9
3	<i>miR-200</i> deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. Genes and Development, 2021, 35, 1109-1122.	5.9	35
4	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genetics, 2020, 16, e1009069.	3.5	15
5	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16 , e 1009069 .		O
6	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function., 2020, 16, e1009069.		0
7	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16 , e 1009069 .		O
8	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function., 2020, 16, e1009069.		0
9	Contribution of postsynaptic Tâ€type calcium channels to parallel fibreâ€Purkinje cell synaptic responses. Journal of Physiology, 2016, 594, 915-936.	2.9	15
10	Genetic and hypoxic alterations of the micro <scp>RNA</scp> â€210― <scp>ISCU</scp> 1/2 axis promote iron–sulfur deficiency and pulmonary hypertension. EMBO Molecular Medicine, 2015, 7, 695-713.	6.9	120
11	MiR-210 Is Induced by Oct-2, Regulates B Cells, and Inhibits Autoantibody Production. Journal of Immunology, 2013, 191, 3037-3048.	0.8	48
12	Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature, 2012, 481, 520-524.	27.8	210
13	A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nature Biotechnology, 2011, 29, 840-845.	17.5	92
14	The Ca _V 3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13823-13828.	7.1	180
15	Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nature Methods, 2009, 6, 493-495.	19.0	340
16	Mosaic Complementation Demonstrates a Regulatory Role for Myosin VIIa in Actin Dynamics of Stereocilia. Molecular and Cellular Biology, 2008, 28, 1702-1712.	2.3	71
17	Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 648-653.	7.1	128
18	Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiation. European Journal of Neuroscience, 2007, 26, 3339-3344.	2.6	60

#	Article	IF	CITATIONS
19	Epileptogenesis and Enhanced Prepulse Inhibition in GABAB1-Deficient Mice. Molecular and Cellular Neurosciences, 2001, 17, 1059-1070.	2.2	260