AntÃ³nio Viana da Fonseca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7131421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamental Parameters for the Stiffness and Strength Control of Artificially Cemented Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 1347-1353.	1.5	105
2	Structural Performance of Alkali-Activated Soil Ash versus Soil Cement. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	93
3	Influence of Cement-Voids Ratio on Stress-Dilatancy Behavior of Artificially Cemented Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 100-109.	1.5	84
4	Effect of the Porosity/Cement Ratio on the Compression of Cemented Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 1422-1426.	1.5	70
5	Strength Properties of Sandy Soil–Cement Admixtures. Geotechnical and Geological Engineering, 2009, 27, 681-686.	0.8	61
6	On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 2014, 9, 215-226.	2.9	57
7	Mechanical and durability properties of a soil stabilised with an alkali-activated cement. European Journal of Environmental and Civil Engineering, 2019, 23, 245-267.	1.0	57
8	Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strains. International Journal of Geomechanics, 2017, 17, .	1.3	50
9	Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques. Geotechnical and Geological Engineering, 2006, 24, 1307-1348.	0.8	48
10	Voids/Cement Ratio Controlling Tensile Strength of Cement-Treated Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 1126-1131.	1.5	45
11	Time and frequency domain evaluation of bender element systems. Geotechnique, 2015, 65, 548-562.	2.2	34
12	Results of a critical state line testing round robin programme. Geotechnique, 2021, 71, 616-630.	2.2	32
13	Interpretation of a footing load test on a saprolitic soil from granite. Geotechnique, 1997, 47, 633-651.	2.2	31
14	Mechanical behavior of inert steel slag ballast for heavy haul rail track: Laboratory evaluation. Transportation Geotechnics, 2019, 20, 100243.	2.0	29
15	Application of the response surface method to optimize alkali activated cements based on low-reactivity ladle furnace slag. Construction and Building Materials, 2020, 264, 120271.	3.2	28
16	Shear wave Velocities for Sample Quality Assessment on a Residual Soil. Soils and Foundations, 2011, 51, 683-692.	1.3	25
17	Influence of grain size and mineralogy on the porosity/cement ratio. Geotechnique Letters, 2013, 3, 130-136.	0.6	24
18	Cyclic DSS tests for the evaluation of stress densification effects in liquefaction assessment. Soil Dynamics and Earthquake Engineering, 2015, 75, 98-111.	1.9	24

AntÃ³nio Viana da Fonseca

#	Article	IF	CITATIONS
19	Cyclic and Dynamic Behavior of Sand–Rubber and Clay–Rubber Mixtures. Geotechnical and Geological Engineering, 2021, 39, 3449-3467.	0.8	24
20	Colombian Soil Stabilized with Geopolymers for Low Cost Roads. Procedia Engineering, 2016, 143, 1392-1400.	1.2	23
21	Recommended Procedures to Assess Critical State Locus from Triaxial Tests in Cohesionless Remoulded Samples. Geotechnics, 2021, 1, 95-127.	1.2	21
22	Analysis of piles in a residual soil—The ISC'2 prediction. Canadian Geotechnical Journal, 2007, 44, 201-220.	1.4	20
23	Geomechanical assessment of an inert steel slag aggregate as an alternative ballast material for heavy haul rail tracks. Construction and Building Materials, 2021, 279, 122438.	3.2	19
24	Compression and shear wave propagation in cemented-sand specimens. Geotechnique Letters, 2011, 1, 79-84.	0.6	18
25	Experimental and Numerical Observations of the Frequency-Domain Method in Bender-Element Testing. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	1.5	18
26	Isotropic yielding of unsaturated cemented silty sand. Canadian Geotechnical Journal, 2013, 50, 807-819.	1.4	17
27	Simplifying calibration of bonded elasto-plastic models. Computers and Geotechnics, 2016, 73, 100-108.	2.3	17
28	Fatigue Cyclic Tests on Artificially Cemented Soil. Geotechnical Testing Journal, 2013, 36, 20120113.	0.5	17
29	Factors Affecting Steady State Locus in Triaxial Tests. Geotechnical Testing Journal, 2016, 39, 20150228.	0.5	17
30	Characterization of unsaturated mine waste: a case history. Canadian Geotechnical Journal, 2017, 54, 1752-1761.	1.4	16
31	Comparative analysis of liquefaction susceptibility assessment methods based on the investigation on a pilot site in the greater Lisbon area. Bulletin of Earthquake Engineering, 2020, 18, 109-138.	2.3	15
32	Structural anisotropy by static compaction. Engineering Geology, 2013, 154, 89-97.	2.9	14
33	Prediction of time of liquefaction using kinetic and strain energy. Soil Dynamics and Earthquake Engineering, 2020, 128, 105898.	1.9	14
34	Dynamic properties of two historically liquefiable sands in the Lisbon area. Soil Dynamics and Earthquake Engineering, 2020, 132, 106101.	1.9	14
35	Geotechnical Characterization by In situ and Lab Tests to the Back-Analysis of a Supported Excavation in Metro do Porto. Geotechnical and Geological Engineering, 2010, 28, 251-264.	0.8	12
36	Deeper Vs profile constraining the dispersion curve with the ellipticity curve: A case study in Lower Tagus Valley, Portugal. Soil Dynamics and Earthquake Engineering, 2018, 109, 188-198.	1.9	11

#	Article	IF	CITATIONS
37	Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale. Bulletin of Earthquake Engineering, 2021, 19, 4013-4057.	2.3	11
38	Load Tests on Residual Soil and Settlement Prediction on Shallow Foundation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2001, 127, 869-883.	1.5	10
39	Characterization of residual soils. , 2008, , .		10
40	Indexation of dynamic and static geomechanical properties of a cemented aggregate for transportation engineering. Transportation Geotechnics, 2014, 1, 31-44.	2.0	9
41	Getting high-quality samples in â€~sensitive' soils for advanced laboratory tests. Innovative Infrastructure Solutions, 2017, 2, 1.	1.1	9
42	The geotechnical test site in the greater Lisbon area for liquefaction characterisation and sample quality control of cohesionless soils. AIMS Geosciences, 2019, 5, 325-343.	0.4	9
43	Silty Sand Stabilized with Different Binders. Procedia Engineering, 2016, 143, 187-195.	1.2	8
44	Full-scale Evaluation in a Fatigue Track of a Base Course Treated with Geopolymers. Procedia Engineering, 2016, 143, 18-25.	1.2	8
45	Particle morphology's influence on the rail ballast behaviour of a steel slag aggregate. Environmental Geotechnics, 0, , 1-10.	1.3	7
46	Performance of Gel-Push sampling in liquefiable soils. Geotechnique Letters, 2020, 10, 256-261.	0.6	7
47	Defining the soil stratigraphy from seismic piezocone data: A clustering approach. Engineering Geology, 2021, 287, 106111.	2.9	7
48	Fragility Assessment of Traffic Embankments Exposed to Earthquake-Induced Liquefaction. Applied Sciences (Switzerland), 2020, 10, 6832.	1.3	5
49	Key geomechanical properties of the historically liquefiable TP-Lisbon sand. Soils and Foundations, 2021, 61, 836-836.	1.3	5
50	New Approach to Concurrent <i>VS</i> and <i>VP</i> Measurements Using Bender Elements. Geotechnical Testing Journal, 2021, 44, 1801-1820.	0.5	5
51	Microzonation of the liquefaction susceptibility: case study in the lower Tagus valley. Geotecnia, 2018, 142, 07-34.	0.1	5
52	Cyclic Liquefaction Resistance of an Alluvial Natural Sand: A Comparison between Fully and Partially Saturated Conditions. Geotechnics, 2022, 2, 1-13.	1.2	5
53	Some remarks on the assessment of P-wave velocity in laboratory tests for evaluating the degree of saturation. Acta Geotechnica, 2023, 18, 777-790.	2.9	5
54	Long Term Cyclic Response of a Soil-Cement Mixture: Experimental Study and Modelling. Procedia Engineering, 2016, 143, 178-186.	1.2	4

#	Article	IF	CITATIONS
55	Critical State Lines of Portuguese liquefiable sands. E3S Web of Conferences, 2019, 92, 06003.	0.2	4
56	Seepage water quality of a soil treated with alkali-activated cement at room temperature. Environmental Geotechnics, 2019, 6, 471-479.	1.3	4
57	Characterization of Highly Variable Rock Weathering by Using DPR. , 2006, , 127.		3
58	Soil Water Characteristic Curve for a Granite Residual Soil: Experimental and Numerical Results. Defect and Diffusion Forum, 0, 312-315, 1172-1177.	0.4	3
59	The mechanics of iron tailings from laboratory tests on reconstituted samples collected in post-mortem Dam I in Brumadinho. Soils and Rocks, 2022, 45, 1-20.	0.2	3
60	The Use of Drilling Parameters Recording as a Tool for Quality Control in Jet Grouting Treatments. , 2012, , .		2
61	Two Bender Receivers Frequency Domain Analysis in Resonant Column Tests. , 2014, , .		2
62	Vulnerability assessment of RC buildings to lateral spreading. Bulletin of Earthquake Engineering, 2020, 18, 3629-3657.	2.3	2
63	Site classification using equivalent soil profiles for building-liquefaction interaction. Bulletin of Earthquake Engineering, 2021, 19, 3987-4012.	2.3	2
64	Time–Frequency Filter for Computation of Surface Acceleration for Liquefiable Sites: Equivalent Linear Stockwell Analysis Method. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	2
65	Alkali-activated cement using slags and fly ash. , 2017, , 161-166.		2
66	Validation of liquefaction prediction models from geotechnical centrifuge tests results. Geotecnia, 2020, 148, 31-54.	0.1	2
67	Analysis of simplified time of liquefaction triggering methods by laboratory tests, physical modelling and numerical analysis. Soil Dynamics and Earthquake Engineering, 2022, 157, 107261.	1.9	2
68	Modelling the behaviour of a retaining wall in residual soils for a cut and cover construction of a deep station in Metro do Porto. Geomechanics and Geoengineering, 2011, 6, 265-281.	0.9	1
69	Investigation into the Settlement of a Case Study Building on Liquefiable Soil in Adapazari, Turkey. , 2018, , .		1
70	Evolution of the optimum ultrasonic testing frequency of alkali-activated soil–ash. Geotechnique Letters, 2021, 11, 158-163.	0.6	1
71	Results of a critical state line testing round robin programme. Geotechnique, 0, , 1-2.	2.2	1
72	Numerical Methodology to Minimize Resolution and Sensitivity Effects in P-Wave Measurements. Geotechnical Testing Journal, 2013, 36, 20120111.	0.5	1

AntÃ³nio Viana da Fonseca

#	Article	IF	CITATIONS
73	Critérios para determinar o teor em cimento no solo para uso como camada de pavimento. Geotecnia, 2015, , 127-145.	0.1	1
74	Detalhes sobre os ensaios de compressão não confinada e tração por compressão diametral. Geotecnia, 2016, , 127-142.	0.1	1
75	Geotechnical Properties of Sediments by In Situ Tests. Sustainable Civil Infrastructures, 2018, , 59-68.	0.1	1
76	Comparative Analysis of the Behavior of a Piled Raft and Corresponding Pile Groups. Sustainable Civil Infrastructures, 2018, , 213-229.	0.1	1
77	Human-driven machine-automation of engineering research. , 2018, , 719-727.		1
78	Characterization of Stiff Residual Soils with Dynamically Push-in DMT. , 2006, , 261.		0
79	Insight Learning from the Results of ISC2 Pile Prediction Event in Residual Soil. , 2009, , .		0
80	Time-enhanced strength increase of an alluvial clay, typical of the northeastern region of Brazil, mixed with different cement doages - doi: 10.4025/actascitechnol.v35i3.16042. Acta Scientiarum - Technology, 2013, 35, .	0.4	0
81	Fatores de segurança determinÃsticos em avaliação de estabilidade de barragens de rejeitos: uma reflexão. Geotecnia, 2021, , 53-76.	0.1	0
82	30 anos de progresso em 3 laboratórios de geotecnia de universidades portuguesas: caracterização de solos não plásticos. Geotecnia, 2021, , 143-185.	0.1	0
83	Approach to Characterization of Cyclic Behavior of Artificially Bounded Soils. , 2009, , .		0
84	Definition of load transfer curves of piles in granitic residual soil. Geotecnia, 2014, 130, 79-99.	0.1	0
85	Design method for road surface thickness of earth roads. Geotecnia, 2014, 131, 113-134.	0.1	0
86	Modeling flow instability of an Algerian sand with the dilatancy rule in CASM. Geomechanics and Engineering, 2015, 9, 729-742.	0.9	0
87	NUMERICAL MODELLING OF THE DYNAMIC RESPONSE OF LIQUEFIABLE DEPOSITS IN THE PRESENCE OF SMALL SCALE BUILDINGS. , 2017, , .		0
88	Physically-Based Object-Oriented Databases for Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering, 2020, , 256-267.	0.0	0
89	Estimation of Scenario-based Liquefaction Probability with Consideration of Ground-motion Randomness. Journal of Earthquake Engineering, 0, , 1-23.	1.4	0
90	CPTu-based approaches for cyclic liquefaction assessment of alluvial soil profiles. Soils and Rocks, 2021, 44, 1-14.	0.2	0

#	Article	IF	CITATIONS
91	Qualidade de amostras "indeformadas―em solos não coesivos recolhidas com procedimentos avançados. Geotecnia, 2021, , 41-62.	0.1	Ο