
Zhengang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/713119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale, 2016, 8, 16684-16693.	5.6	131
2	Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene. ACS Applied Materials & Interfaces, 2017, 9, 34221-34229.	8.0	112
3	Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures. ACS Applied Materials & Interfaces, 2019, 11, 11782-11791.	8.0	88
4	Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing. 2D Materials, 2017, 4, 025021.	4.4	58
5	Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. Optics Letters, 2017, 42, 1620.	3.3	52
6	Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light. Optics Express, 2007, 15, 790.	3.4	50
7	Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity. Advanced Science, 2019, 6, 1901320.	11.2	40
8	Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays. Optics Express, 2016, 24, 22989.	3.4	35
9	Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh. Applied Physics Letters, 2014, 105, .	3.3	34
10	Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays. Optics Letters, 2016, 41, 1941.	3.3	26
11	Optically transparent frequency selective surface based on nested ring metallic mesh. Optics Express, 2016, 24, 26109.	3.4	23
12	Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding. Thin Solid Films, 2018, 662, 76-82.	1.8	16
13	Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings. ACS Applied Materials & Interfaces, 2022, 14, 17727-17738.	8.0	16
14	Two-degree-of-freedom displacement measurement system based on double diffraction gratings. Measurement Science and Technology, 2016, 27, 074012.	2.6	15
15	Analysis of transmitting characteristics of high-transparency double-layer metallic meshes with submillimeter period using an analytical model. Applied Optics, 2008, 47, 5519.	2.1	11
16	Analysis of Fraunhofer diffractive characteristics of a tilted metallic mesh for its effect on optical measurement. Measurement Science and Technology, 2007, 18, 1703-1709.	2.6	10
17	Two-dimensional displacement measurement based on two parallel gratings. Review of Scientific Instruments, 2018, 89, 065105.	1.3	10
18	Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh. Optics Communications, 2011, 284, 3855-3861.	2.1	9

ZHENGANG LU

#	Article	IF	CITATIONS
19	Verification and improvement of equivalent refractive index models for evaluating the shielding effectiveness of high-transmittance double-layer metallic meshes. Applied Optics, 2016, 55, 5372.	2.1	8
20	High-transmittance double-layer frequency-selective surface based on interlaced multiring metallic mesh. Optics Letters, 2019, 44, 1253.	3.3	8
21	Transparent and Highâ€Absoluteâ€Effectiveness Electromagnetic Interference Shielding Film Based on Singleâ€Crystal Graphene. Advanced Materials Technologies, 2022, 7, .	5.8	8
22	Two-step randomized design of multi-rings metallic mesh for ultra-uniform diffraction distribution. Optics and Laser Technology, 2021, 144, 107396.	4.6	7
23	Highâ€Performance Transparent Broadband Microwave Absorbers. Advanced Materials Interfaces, 2022, 9, .	3.7	7
24	Measuring the Laser Polarization State and PBS Transmission Coefficients in a Heterodyne Laser Interferometer. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 706-714.	4.7	5
25	Measuring parallelism of two parallel narrow beams based on differential defocusing principle. Optics Express, 2016, 24, 15854.	3.4	4
26	Equivalent reactance model on shielding effectiveness analysis of high-transparent ring metallic mesh with submillimeter period and micrometer linewidth. , 2010, , .		3
27	Transparent Ultrathin Doped Silver Film for Broadband Electromagnetic Interference Shielding. , 2018, , .		3
28	Comprehensive evaluation factor of optoelectronic properties for transparent conductive metallic mesh films. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1532-1540.	2.6	3
29	Double-grating diffraction interferometric stylus probing system for surface proï¬ling and roughness measurement. , 2015, , .		0
30	Effect of tilted metallic mesh on modulation transfer function of optical system. , 2008, , .		0