Subodh Mhaisalkar

List of Publications by Citations

Source: https://exaly.com/author-pdf/7130978/subodh-mhaisalkar-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

522 42,051 90 192 h-index g-index citations papers 46,640 8.3 7.61 552 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
522	Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. <i>Science</i> , 2013 , 342, 344-7	33.3	5214
521	Low-temperature solution-processed wavelength-tunable perovskites for lasing. <i>Nature Materials</i> , 2014 , 13, 476-80	27	2291
520	Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5628	13	1972
519	Perovskite Materials for Light-Emitting Diodes and Lasers. <i>Advanced Materials</i> , 2016 , 28, 6804-34	24	946
518	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 399-407	35.4	838
517	High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. <i>Nano Letters</i> , 2013 , 13, 2412-7	11.5	825
516	Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. <i>Advanced Materials</i> , 2014 , 26, 7122-7	24	737
515	Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4905-17	16.4	627
514	Advancements in perovskite solar cells: photophysics behind the photovoltaics. <i>Energy and Environmental Science</i> , 2014 , 7, 2518-2534	35.4	605
513	Lead-free germanium iodide perovskite materials for photovoltaic applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23829-23832	13	569
512	Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16458-16462	3.8	554
511	Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. <i>Chemical Communications</i> , 2013 , 49, 11089-91	5.8	481
510	Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. <i>Nano Research</i> , 2010 , 3, 643-652	10	472
509	Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4360-4	6.4	413
508	Band-gap tuning of lead halide perovskites using a sequential deposition process. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9221-9225	13	398
507	Perovskites for Next-Generation Optical Sources. <i>Chemical Reviews</i> , 2019 , 119, 7444-7477	68.1	391
506	Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. <i>ACS Nano</i> , 2014 , 8, 6797-804	16.7	371

(2016-2014)

505	MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics. <i>Advanced Functional Materials</i> , 2014 , 24, 2155-2162	15.6	362	
504	Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. <i>Energy and Environmental Science</i> , 2012 , 5, 8673	35.4	354	
503	In situ growth of NiCo(2)S(4) nanosheets on graphene for high-performance supercapacitors. <i>Chemical Communications</i> , 2013 , 49, 10178-80	5.8	347	
502	Lead-Free MA2CuCl(x)Br(4-x) Hybrid Perovskites. <i>Inorganic Chemistry</i> , 2016 , 55, 1044-52	5.1	345	
501	A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4085-8	16.4	345	
500	Formamidinium tin-based perovskite with low Eg for photovoltaic applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14996-15000	13	338	
499	Solid-State Gas Sensors: A Review. <i>Journal of the Electrochemical Society</i> , 1992 , 139, 3690-3704	3.9	312	
498	Current progress and future perspectives for organic/inorganic perovskite solar cells. <i>Materials Today</i> , 2014 , 17, 16-23	21.8	293	
497	Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. Journal of Physical Chemistry Letters, 2016 , 7, 5105-5113	6.4	284	
496	Impact of Anionic Brl\(Substitution on Open Circuit Voltage in Lead Free Perovskite (CsSnI3-xBrx) Solar Cells. Journal of Physical Chemistry C, 2015 , 119, 1763-1767	3.8	263	
495	Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. <i>Advanced Materials</i> , 2012 , 24, 2699-702	24	257	
494	Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6720		255	
493	⊞e2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. <i>Nanoscale</i> , 2012 , 4, 2958-61	7.7	237	
492	Electrospun Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12198		237	
491	Electrospun composite nanofibers and their multifaceted applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12953		235	
490	Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 898-907	6.4	234	
489	A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl). <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9298-9307	13	216	
488	Discerning the Surface and Bulk Recombination Kinetics of OrganicIhorganic Halide Perovskite Single Crystals. <i>Advanced Energy Materials</i> , 2016 , 6, 1600551	21.8	214	

487	Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. <i>Nano Letters</i> , 2015 , 15, 3833-9	11.5	211
486	Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics. <i>Chemistry of Materials</i> , 2016 , 28, 7496-7504	9.6	203
485	Nanostructuring Mixed-Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics. <i>Advanced Materials</i> , 2016 , 28, 3653-61	24	201
484	Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. <i>Nature Communications</i> , 2017 , 8, 14350	17.4	196
483	Charge Accumulation and Hysteresis in Perovskite-Based Solar Cells: An Electro-Optical Analysis. <i>Advanced Energy Materials</i> , 2015 , 5, 1500829	21.8	196
482	Hydrothermal Synthesis of High Electron Mobility Zn-doped SnO2 Nanoflowers as Photoanode Material for Efficient Dye-Sensitized Solar Cells. <i>Chemistry of Materials</i> , 2011 , 23, 3938-3945	9.6	190
481	A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films. <i>ACS Nano</i> , 2016 , 10, 3959-67	16.7	188
480	A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. <i>Energy and Environmental Science</i> , 2016 , 9, 3687-3692	35.4	187
479	Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. <i>Journal of Power Sources</i> , 2011 , 196, 8850-8854	8.9	185
478	Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. <i>Nanoscale</i> , 2012 , 4, 1707-16	7.7	181
477	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8400-8406	3.8	181
476	High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18087-18092	3.8	175
475	Solution-Processed Tin-Based Perovskite for Near-Infrared Lasing. <i>Advanced Materials</i> , 2016 , 28, 8191-8	312946	174
474	Non-Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Self-Assembled Block Copolymer. <i>Advanced Materials</i> , 2008 , 20, 2325-2331	24	173
473	Electrospun TiO2© raphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 14780-14788	3.8	171
472	Interfacial Electron Transfer Barrier at Compact TiO2 /CH3 NH3 PbI3 Heterojunction. <i>Small</i> , 2015 , 11, 3606-13	11	168
471	Printable photo-supercapacitor using single-walled carbon nanotubes. <i>Energy and Environmental Science</i> , 2011 , 4, 413-416	35.4	167
470	Rutile TiO2-based perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9251	13	166

(2011-2014)

469	High efficiency electrospun TiOlhanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale, 2014 , 6, 1675-9	7.7	163	
468	Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells. <i>Chemical Science</i> , 2014 , 5, 2702-2709	9.4	160	
467	Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9099-110	16.4	159	
466	A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. Journal of Materials Chemistry A, 2014 , 2, 6305-6309	13	156	
465	Polaron self-localization in white-light emitting hybrid perovskites. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2771-2780	7.1	155	
464	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. <i>Angewandte Chemie</i> , 2014 , 126, 12802-12807	3.6	149	
463	Morphology-Independent Stable White-Light Emission from Self-Assembled Two-Dimensional Perovskites Driven by Strong Exciton Phonon Coupling to the Organic Framework. <i>Chemistry of Materials</i> , 2017 , 29, 3947-3953	9.6	146	
462	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. <i>Joule</i> , 2020 , 4, 1035	-120/583	145	
461	Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites. <i>ACS Energy Letters</i> , 2017 , 2, 837-845	20.1	142	
460	Charging phenomena in pentacene-gold nanoparticle memory device. <i>Applied Physics Letters</i> , 2007 , 90, 042906	3.4	137	
459	Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12594-9	16.4	131	
458	Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. <i>Nano Letters</i> , 2015 , 15, 1553-8	11.5	130	
457	Computational Study of Halide Perovskite-Derived A2BX6 Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability. <i>Chemistry of Materials</i> , 2017 , 29, 7740-7749	9.6	128	
456	DNA sensing by field-effect transistors based on networks of carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14427-32	16.4	128	
455	Iron pyrite thin film counter electrodes for dye-sensitized solar cells: high efficiency for iodine and cobalt redox electrolyte cells. <i>ACS Nano</i> , 2014 , 8, 10597-605	16.7	127	
454	Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. <i>Journal of Solid State Chemistry</i> , 2012 , 186, 261-267	3.3	127	
453	Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. <i>Nature Communications</i> , 2017 , 8, 15198	17.4	124	
452	Towards printable organic thin film transistor based flash memory devices. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5203		124	

451	Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2122-2128	13	123
45°	Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. <i>ChemSusChem</i> , 2014 , 7, 3420-5	8.3	122
449	Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. <i>Accounts of Chemical Research</i> , 2016 , 49, 294-302	24.3	116
448	Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. <i>Energy and Environmental Science</i> , 2018 , 11, 1770-1778	35.4	113
447	Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSCs). <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 19307-9	3.6	113
446	Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1396-402	6.4	112
445	Electrospun polyaniline nanofibers web electrodes for supercapacitors. <i>Journal of Applied Polymer Science</i> , 2013 , 129, 1660-1668	2.9	111
444	Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. <i>Nano Letters</i> , 2012 , 12, 5431-	5 11.5	110
443	Over 20% Efficient CIGSPerovskite Tandem Solar Cells. ACS Energy Letters, 2017, 2, 807-812	20.1	109
442	Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells. <i>Nature Communications</i> , 2013 , 4, 2004	17.4	105
441	Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles. <i>Chemical Communications</i> , 2016 , 52, 7118-21	5.8	105
440	Identifying Fundamental Limitations in Halide Perovskite Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 243	9-445	103
439	Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric. <i>Organic Electronics</i> , 2008 , 9, 1087-1092	3.5	100
438	Bifunctional carbon nanotube networks for supercapacitors. <i>Applied Physics Letters</i> , 2007 , 90, 264104	3.4	95
437	Particle Size Effect of Silver Nanoparticles Decorated Single Walled Carbon Nanotube Electrode for Supercapacitors. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A179	3.9	92
436	Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power Neuromorphic Computation. <i>Advanced Materials</i> , 2018 , 30, e1805454	24	91
435	Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1519-25	6.4	90
434	Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. <i>Journal of Drug Targeting</i> , 2009 , 17, 181-93	5.4	90

(2016-2009)

433	Micellar poly(styrene-b-4-vinylpyridine)-nanoparticle hybrid system for non-volatile organic transistor memory. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7354		90
432	Electrical Detection of Femtomolar DNA via Gold-Nanoparticle Enhancement in Carbon-Nanotube-Network Field-Effect Transistors. <i>Advanced Materials</i> , 2008 , 20, 2389-2393	24	90
431	Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. <i>Polymer</i> , 2008 , 49, 4196-4203	3.9	87
430	Limitations of CsBiI as Lead-Free Photovoltaic Absorber Materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 35000-35007	9.5	85
429	Benzyl Alcohol-Treated CHNHPbBr Nanocrystals Exhibiting High Luminescence, Stability, and Ultralow Amplified Spontaneous Emission Thresholds. <i>Nano Letters</i> , 2017 , 17, 7424-7432	11.5	85
428	Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. <i>ChemSusChem</i> , 2014 , 7, 2212-20	8.3	84
427	Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1702116	21.8	84
426	Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. <i>Journal of Power Sources</i> , 2015 , 294, 112-119	8.9	83
425	The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors. <i>Applied Physics Letters</i> , 2009 , 94, 263303	3.4	83
424	Efficient multispectral photodetection using Mn doped ZnO nanowires. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9678		82
423	Controlled synthesis of BiOCl hierarchical self-assemblies with highly efficient photocatalytic properties. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 258-68	4.5	81
422	Poor Photovoltaic Performance of Cs3Bi2I9: An Insight through First-Principles Calculations. Journal of Physical Chemistry C, 2017 , 121, 17062-17067	3.8	81
421	Unravelling the Effects of Cl Addition in Single Step CH3NH3PbI3 Perovskite Solar Cells. <i>Chemistry of Materials</i> , 2015 , 27, 2309-2314	9.6	81
420	Nanostructured cathode materials: a key for better performance in Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11040		81
419	Hybrid graphenethetal nanoparticle systems: electronic properties and gas interaction. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15593		81
418	Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 2192-2200	20.1	80
417	Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc batteries. <i>Journal of Power Sources</i> , 2010 , 195, 4350-4355	8.9	79
416	Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. <i>Science Advances</i> , 2016 , 2, e1600477	14.3	78

415	Facile photochemical synthesis of graphene-pt nanoparticle composite for counter electrode in dye sensitized solar cell. <i>ACS Applied Materials & Samp; Interfaces</i> , 2012 , 4, 3447-52	9.5	78
414	In situ observation of electromigration-induced void migration in dual-damascene Cu interconnect structures. <i>Applied Physics Letters</i> , 2004 , 85, 2502-2504	3.4	78
413	Crown Ethers Enable Room-Temperature Synthesis of CsPbBr3 Quantum Dots for Light-Emitting Diodes. <i>ACS Energy Letters</i> , 2018 , 3, 526-531	20.1	77
412	Differentiation of Gas Molecules Using Flexible and All-Carbon Nanotube Devices. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 650-653	3.8	77
411	Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. <i>Nanoscale</i> , 2016 , 8, 6352-60	7.7	76
410	Controlled growth of hematite (Fe2O3) nanorod array on fluorine doped tin oxide: Synthesis and photoelectrochemical properties. <i>Electrochemistry Communications</i> , 2011 , 13, 951-954	5.1	76
409	Efficient and Ambient-Air-Stable Solar Cell with Highly Oriented 2D@3D Perovskites. <i>Advanced Functional Materials</i> , 2018 , 28, 1801654	15.6	76
408	Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. <i>CrystEngComm</i> , 2013 , 15, 1922	3.3	74
407	Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. <i>Nature Communications</i> , 2018 , 9, 4197	17.4	74
406	Enhanced Exciton and Photon Confinement in Ruddlesden-Popper Perovskite Microplatelets for Highly Stable Low-Threshold Polarized Lasing. <i>Advanced Materials</i> , 2018 , 30, e1707235	24	73
405	Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells. <i>ACS Applied Materials & District Action Sensitized</i> , 4, 397-404	9.5	73
404	A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 16182-6	3.6	72
403	Highly efficient Cs-based perovskite light-emitting diodes enabled by energy funnelling. <i>Chemical Communications</i> , 2017 , 53, 12004-12007	5.8	71
402	Spinel CoO nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. <i>Nanoscale</i> , 2018 , 10, 2341-2350	7.7	70
401	Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. <i>APL Materials</i> , 2014 , 2, 081512	5.7	70
400	Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. <i>Nanoscale</i> , 2014 , 6, 13854-60	7.7	70
399	Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics. <i>ChemSusChem</i> , 2016 , 9, 2541-2558	8.3	69
398	Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> 2011 , 223, 97-102	4.7	69

(2008-2011)

397	Facile solution deposition of ZnIn2S4 nanosheet films on FTO substrates for photoelectric application. <i>Nanoscale</i> , 2011 , 3, 2602-8	7.7	69
396	One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. <i>Solar Rrl</i> , 2018 , 2, 1700217	7.1	68
395	Electrospun conductive polyanilinepolylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. <i>RSC Advances</i> , 2012 , 2, 652-657	3.7	68
394	Fill Factor Losses in Cu2ZnSn(SxSe1☑)4 Solar Cells: Insights from Physical and Electrical Characterization of Devices and Exfoliated Films. <i>Advanced Energy Materials</i> , 2016 , 6, 1501609	21.8	67
393	High-Energy Density Asymmetric Supercapacitor Based on Electrospun Vanadium Pentoxide and Polyaniline Nanofibers in Aqueous Electrolyte. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1481-	À1488	66
392	Effect of the Ionic Conductivity on the Performance of Polyelectrolyte-Based Supercapacitors. <i>Advanced Functional Materials</i> , 2010 , 20, 4344-4350	15.6	66
391	Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission. <i>Chemistry of Materials</i> , 2019 , 31, 9003-9011	9.6	65
390	Ultrafine Gold Nanowire Networks as Plasmonic Antennae in Organic Photovoltaics. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 6453-6458	3.8	65
389	A facile route to vertically aligned electrospun SnO2 nanowires on a transparent conducting oxide substrate for dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2166-2172		64
388	Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes. <i>Langmuir</i> , 2008 , 24, 5109-12	4	64
387	Effects of dissolved nitrogen in improving barrier properties of ruthenium. <i>Applied Physics Letters</i> , 2006 , 88, 044101	3.4	63
386	A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells. <i>Angewandte Chemie</i> , 2014 , 126, 4169-4172	3.6	61
385	Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition. <i>Chemical Communications</i> , 2015 , 51, 4603-6	5.8	61
384	Selective sensing of hydrogen sulphide using silver nanoparticle decorated carbon nanotubes. <i>Sensors and Actuators B: Chemical</i> , 2009 , 138, 189-192	8.5	60
383	Broadband-Emitting 2 D Hybrid Organic-Inorganic Perovskite Based on Cyclohexane-bis(methylamonium) Cation. <i>ChemSusChem</i> , 2017 , 10, 3765-3772	8.3	59
382	Synthesis of low band gap [1,2,5]-thiadiazolo[3,4-g]quinoxaline and pyrazino[2,3-g]quinoxaline derivatives by selective reduction of benzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole. <i>Organic Letters</i> , 2011 , 13, 46-9	6.2	59
381	An organic field effect transistor as a selective NOx sensor operated at room temperature. <i>Sensors and Actuators B: Chemical</i> , 2009 , 140, 445-450	8.5	59
380	Synthesis of gold nanoshells based on the depositionprecipitation process 2008 , 41, 23-36		59

379	Microstructure, joint strength and failure mechanisms of SnPb and Pb-free solders in BGA packages. <i>IEEE Transactions on Electronics Packaging Manufacturing</i> , 2002 , 25, 185-192		59
378	Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. <i>Nature Communications</i> , 2019 , 10, 484	17.4	58
377	Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. <i>Energy and Environmental Science</i> , 2019 , 12, 1068-1077	35.4	58
376	Controlled Synthesis of Sb Nanostructures and Their Conversion to CoSb3Nanoparticle Chains for Li-Ion Battery Electrodes. <i>Chemistry of Materials</i> , 2010 , 22, 5333-5339	9.6	57
375	Designing Efficient Energy Funneling Kinetics in Ruddlesden-Popper Perovskites for High-Performance Light-Emitting Diodes. <i>Advanced Materials</i> , 2018 , 30, e1800818	24	57
374	Synthesis of Cu(In,Ga)(S,Se)2 thin films using an aqueous spray-pyrolysis approach, and their solar cell efficiency of 10.5%. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4147-4154	13	56
373	Oxide nanowire networks and their electronic and optoelectronic characteristics. <i>Nanoscale</i> , 2010 , 2, 1984-98	7.7	56
372	Novel Plasma-Assisted Low-Temperature-Processed SnO2 Thin Films for Efficient Flexible Perovskite Photovoltaics. <i>ACS Energy Letters</i> , 2018 , 3, 1482-1491	20.1	56
371	Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14701-8	3.6	55
370	Facile Method to Reduce Surface Defects and Trap Densities in Perovskite Photovoltaics. <i>ACS Applied Materials & Description (Materials & Description of Materials & Description of Mat</i>	9.5	54
369	Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous ⊞e2O3 structures. <i>RSC Advances</i> , 2012 , 2, 8201	3.7	54
368	Electromigration behavior of dual-damascene Cu interconnectsBtructure, width, and length dependences. <i>Microelectronics Reliability</i> , 2004 , 44, 747-754	1.2	54
367	Effect of Ni P thickness on solid-state interfacial reactions between SnB.5Ag solder and electroless Ni P metallization on Cu substrate. <i>Thin Solid Films</i> , 2006 , 504, 410-415	2.2	53
366	Ruthenium Barrier/Seed Layer for Cu/Low-IMetallization. <i>Journal of the Electrochemical Society</i> , 2006 , 153, J41	3.9	53
365	Evolution Pathway of CIGSe Nanocrystals for Solar Cell Applications. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8202-8209	3.8	52
364	Low-Temperature Chemical Transformations for High-Performance Solution-Processed Oxide Transistors. <i>Chemistry of Materials</i> , 2016 , 28, 8305-8313	9.6	51
363	Tuning electrical properties in amorphous zinc tin oxide thin films for solution processed electronics. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 773-7	9.5	51
362	Low temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 6763-8	3.6	51

(2013-2008)

361	Direct Observation of Alkyl Chain Interdigitation in Conjugated Polyquarterthiophene Self-Organized on Graphite Surfaces. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1197-1202	4.8	51	
360	Perovskite Nanoparticles: Synthesis, Properties, and Novel Applications in Photovoltaics and LEDs. <i>Small Methods</i> , 2019 , 3, 1800231	12.8	51	
359	Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell. <i>Organic Electronics</i> , 2012 , 13, 870-874	3.5	50	
358	Ultralow Power Dual-Gated Subthreshold Oxide Neuristors: An Enabler for Higher Order Neuronal Temporal Correlations. <i>ACS Nano</i> , 2018 , 12, 11263-11273	16.7	50	
357	Light scattering enhancement from sub-micrometer cavities in the photoanode for dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16201		48	
356	Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric. <i>Organic Electronics</i> , 2007 , 8, 415-422	3.5	48	
355	Development and reliability of non-conductive adhesive flip-chip packages. <i>Thin Solid Films</i> , 2004 , 462-463, 446-453	2.2	48	
354	Microwave Dielectric Properties of Doped BaTi4O9. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 1894-1898	3.8	48	
353	Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hot-Casting Method under Ambient Conditions. <i>Advanced Energy Materials</i> , 2018 , 8, 1802051	21.8	48	
352	In situ synthesis of platinum/polyaniline composite counter electrodes for flexible dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5308		47	
351	Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9784		47	
350	Moisture-induced failures of adhesive flip chip interconnects. <i>IEEE Transactions on Components and Packaging Technologies</i> , 2005 , 28, 506-516		47	
349	Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. <i>Surface and Coatings Technology</i> , 2006 , 200, 6690-6695	4.4	47	
348	Completely Solvent-free Protocols to Access Phase-Pure, Metastable Metal Halide Perovskites and Functional Photodetectors from the Precursor Salts. <i>IScience</i> , 2019 , 16, 312-325	6.1	46	
347	Additive Selection Strategy for High Performance Perovskite Photovoltaics. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13884-13893	3.8	46	
346	High-throughput Computational Study of Halide Double Perovskite Inorganic Compounds. <i>Chemistry of Materials</i> , 2019 , 31, 5392-5401	9.6	46	
345	Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: an investigation of charge transport and shift in the TiO2 conduction band. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 444-50	9.5	46	
344	Synthesis of Cu2SnSe3 nanocrystals for solution processable photovoltaic cells. <i>Inorganic Chemistry</i> , 2013 , 52, 1722-8	5.1	46	

343	Facile Synthesis of a Furan-Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells. <i>Chemistry - A European Journal</i> , 2015 , 21, 15113-7	4.8	45
342	Self-Supporting Three-Dimensional ZnIn2S4/PVDF B oly(MMA-co-MAA) Composite Mats with Hierarchical Nanostructures for High Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13849-13857	3.8	45
341	Efficiency Enhancement in Bulk-Heterojunction Solar Cells Integrated with Large-Area Ag Nanotriangle Arrays. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 14820-14825	3.8	45
340	One-pot synthesis of 4,8-dibromobenzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole. <i>Organic Letters</i> , 2010 , 12, 334	0632	45
339	Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study. <i>Lasers in Surgery and Medicine</i> , 2008 , 40, 584-9	3.6	45
338	Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8523-9	3.6	44
337	Bifacial, Color-Tunable Semitransparent Perovskite Solar Cells for Building-Integrated Photovoltaics. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 484-493	9.5	44
336	Recovery of Shallow Charge-Trapping Defects in CsPbX3 Nanocrystals through Specific Binding and Encapsulation with Amino-Functionalized Silanes. <i>ACS Energy Letters</i> , 2018 , 3, 1409-1414	20.1	44
335	Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 34178-34187	9.5	43
334	Cobalt dopant with deep redox potential for organometal halide hybrid solar cells. <i>ChemSusChem</i> , 2014 , 7, 1909-14	8.3	43
333	Nanoparticle-induced grain growth of carbon-free solution-processed CuIn(S,Se)2 solar cell with 6% efficiency. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1533-7	9.5	43
332	Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes. <i>Nanoscale</i> , 2019 , 11, 12370-12380	7.7	42
331	Free-standing electrospun carbon nanofibres high performance anode material for lithium-ion batteries. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 265302	3	42
330	Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors. <i>Applied Physics Letters</i> , 2006 , 89, 232104	3.4	42
329	Processing and Characterization of BaTi4O9. <i>Journal of the American Ceramic Society</i> , 1989 , 72, 2154-21	1 5₉₈₈	42
328	Synthesis and characterization of [1,2,5]chalcogenazolo[3,4-f]benzo[1,2,3]triazole and [1,2,3]triazolo[3,4-g]quinoxaline derivatives. <i>Organic Letters</i> , 2011 , 13, 4612-5	6.2	41
327	Aligned Tin Oxide Nanonets for High-Performance Transistors. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1331-1336	3.8	41
326	Electrical detection of nitric oxide using single-walled carbon nanotube network devices. <i>Carbon</i> , 2007 , 45, 1911-1914	10.4	41

325	Band engineered ternary solid solution CdSxSe1-x-sensitized mesoscopic TiO2 solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 7154-61	3.6	40	
324	Thieno[3,2-b]thiophene oligomers and their applications as p-type organic semiconductors. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3449		40	
323	Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer. <i>Journal of Electronic Materials</i> , 2005 , 34, 1177-1182	1.9	40	
322	New donor-Eacceptor sensitizers containing 5H-[1,2,5]thiadiazolo [3,4-f]isoindole-5,7(6H)-dione and 6H-pyrrolo[3,4-g]quinoxaline-6,8(7H)-dione units. <i>Chemical Communications</i> , 2013 , 49, 2409-11	5.8	39	
321	Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo. <i>Journal of Biomedical Optics</i> , 2009 , 14, 054015	3.5	39	
320	Charge Transfer Between Polyaniline and Carbon Nanotubes Supercapacitors: Improving Both Energy and Power Densities. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1	3.9	39	
319	Aligned carbon nanotubes on quartz substrate for liquid gated biosensing. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1989-93	11.8	39	
318	Mechanical properties of UV-curable polyurethane acrylate used in packaging of MEMS devices. <i>Thin Solid Films</i> , 2006 , 504, 384-390	2.2	39	
317	Improved Photovoltaic Efficiency and Amplified Photocurrent Generation in Mesoporous n = 1 Two-Dimensional LeadIbdide Perovskite Solar Cells. <i>Chemistry of Materials</i> , 2019 , 31, 890-898	9.6	39	
316	Extended Absorption Window and Improved Stability of Cesium-Based Triple-Cation Perovskite Solar Cells Passivated with Perfluorinated Organics. <i>ACS Energy Letters</i> , 2018 , 3, 1068-1076	20.1	38	
315	Coherent Spin and Quasiparticle Dynamics in Solution-Processed Layered 2D Lead Halide Perovskites. <i>Advanced Science</i> , 2018 , 5, 1800664	13.6	38	
314	High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode. <i>RSC Advances</i> , 2012 , 2, 7983	3.7	38	
313	Femtomolar detection of 2,4-dichlorophenoxyacetic acid herbicides via competitive immunoassays using microfluidic based carbon nanotube liquid gated transistor. <i>Lab on A Chip</i> , 2010 , 10, 634-8	7.2	38	
312	2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. <i>Journal of Power Sources</i> , 2017 , 371, 156-161	8.9	37	
311	Influence of 4-tert-Butylpyridine in DSCs with CoII/III Redox Mediator. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15515-15522	3.8	37	
310	Cyclic loading as an extended nanoindentation technique. <i>Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 423, 14-18	5.3	37	
309	Current crowding effect on copper dual damascene via bottom failure for ULSI applications. <i>IEEE Transactions on Device and Materials Reliability</i> , 2005 , 5, 198-205	1.6	37	
308	Behavior of a New ZrO2 - MoO3 Sensor for Carbon Monoxide Detection. <i>Journal of the Electrochemical Society</i> , 1992 , 139, 2913-2920	3.9	37	

307	Hot carrier extraction in CHNHPbI unveiled by pump-push-probe spectroscopy. <i>Science Advances</i> , 2019 , 5, eaax3620	14.3	37
306	Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires. <i>Nanoscale</i> , 2014 , 6, 7619-27	7.7	36
305	Solution-Processed n-Type Organic Field-Effect Transistors With High on /off Current Ratios Based on Fullerene Derivatives. <i>IEEE Electron Device Letters</i> , 2007 , 28, 880-883	4.4	36
304	Adhesion study of low-k/Si system using 4-point bending and nanoscratch test. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 121, 193-198	3.1	36
303	Designing the Perovskite Structural Landscape for Efficient Blue Emission. <i>ACS Energy Letters</i> , 2020 , 5, 1593-1600	20.1	36
302	Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15718		35
301	Electrical and photoresponse properties of Co3O4 nanowires. <i>Journal of Applied Physics</i> , 2012 , 111, 10	43206	34
300	Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4614-9	3.6	34
299	Direct detection of heroin metabolites using a competitive immunoassay based on a carbon-nanotube liquid-gated field-effect transistor. <i>Small</i> , 2010 , 6, 993-8	11	34
298	Facile synthesis of a hole transporting material with a silafluorene core for efficient mesoscopic CH3NH3PbI3 perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8750-8754	13	34
297	Solution processed non-volatile top-gate polymer field-effect transistors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8971		33
296	Realizing Reduced Imperfections via Quantum Dots Interdiffusion in High Efficiency Perovskite Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e2003296	24	33
295	Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5028-5036	7.1	32
294	Solution-Processed Bootstrapped Organic Inverters Based on P3HT With a High- \$k\$ Gate Dielectric Material. <i>IEEE Electron Device Letters</i> , 2009 , 30, 484-486	4.4	32
293	Deposition of PEEK coatings using a combined flame sprayinglaser remelting process. <i>Surface and Coatings Technology</i> , 2006 , 201, 243-249	4.4	32
292	The effect of annealing on the morphologies and conductivities of sub-micrometer sized nickel particles used for electrically conductive adhesive. <i>Thin Solid Films</i> , 2006 , 504, 416-420	2.2	32
291	Cu-doped nickel oxide interface layer with nanoscale thickness for efficient and highly stable printable carbon-based perovskite solar cell. <i>Solar Energy</i> , 2019 , 182, 225-236	6.8	32
290	Ultrasensitive Phototransistor Based on K-Enriched MoO3 Single Nanowires. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22015-22020	3.8	31

(2013-2008)

289	9,10-Ter-anthrylene-ethynylene: a new molecular architecture for solution processed anthracene-based thin film transistors. <i>Journal of Materials Chemistry</i> , 2008 , 18, 786		31	
288	Effect of plating parameters on the intrinsic stress in electroless nickel plating. <i>Surface and Coatings Technology</i> , 2003 , 167, 170-176	4.4	31	
287	Synthesis and cure kinetics of isotropic conductive adhesives comprising sub-micrometer sized nickel particles. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 117, 153-158	3.1	31	
286	Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells. <i>ACS Nano</i> , 2014 , 8, 10101-10	16.7	30	
285	Enhancing efficiency of perovskite solar cell via surface microstructuring: Superior grain growth and light harvesting effect. <i>Solar Energy</i> , 2015 , 112, 12-19	6.8	29	
284	Stabilizing the Electroluminescence of Halide Perovskites with Potassium Passivation. <i>ACS Energy Letters</i> , 2020 , 5, 1804-1813	20.1	29	
283	Mixed-Dimensional Naphthylmethylammoinium-Methylammonium Lead Iodide Perovskites with Improved Thermal Stability. <i>Scientific Reports</i> , 2020 , 10, 429	4.9	29	
282	Facile One-Step Synthesis of CdSxSe1N Nanobelts with Uniform and Controllable Stoichiometry. Journal of Physical Chemistry C, 2011 , 115, 19538-19545	3.8	29	
281	Effect of TiO2Mesoporous Layer and Surface Treatments in Determining Efficiencies in Antimony Sulfide-(Sb2S3) Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2012 , 159, B247-B250	3.9	29	
2 80	Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis. <i>Journal of Biomedical Optics</i> , 2008 , 13, 054026	3.5	29	
279	Effect of post-reflow cooling rate on intermetallic compound formation between SnB.5 Ag solder and NiP under bump metallization. <i>Thin Solid Films</i> , 2004 , 462-463, 363-369	2.2	29	
278	Lead Halide Perovskite Nanocrystals: Room Temperature Syntheses toward Commercial Viability. <i>Advanced Energy Materials</i> , 2020 , 10, 2001349	21.8	29	
277	Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. <i>Nature Communications</i> , 2021 , 12, 3681	17.4	29	
276	Comprehensive energy poverty index: Measuring energy poverty and identifying micro-level solutions in South and Southeast Asia. <i>Energy Policy</i> , 2019 , 132, 379-391	7.2	28	
275	Photothermoelectric Effects in Localized Photocurrent of Individual VO2 Nanowires. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15149-15156	3.8	28	
274	Protein/carbon nanotubes interaction: The effect of carboxylic groups on conformational and conductance changes. <i>Applied Physics Letters</i> , 2009 , 95, 073704	3.4	28	
273	High-Temperature Stability of Silicon Carbide Nanowires. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 3999-4002	1.3	28	
272	Investigation of the role of anions in hydrotalcite for quasi-solid state dye-sensitized solar cells application. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4345	13	27	

271	Label-free electronic detection of bio-toxins using aligned carbon nanotubes. <i>Biosensors and Bioelectronics</i> , 2013 , 43, 143-7	11.8	27
270	Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation. <i>Nanotechnology</i> , 2011 , 22, 115202	3.4	27
269	Laminated, microfluidic-integrated carbon nanotube based biosensors. <i>Applied Physics Letters</i> , 2009 , 94, 013107	3.4	27
268	Study of interfacial adhesion energy of multilayered ULSI thin film structures using four-point bending test. <i>Surface and Coatings Technology</i> , 2005 , 198, 85-89	4.4	27
267	Observations of Gelation and Vitrification of a Thermosetting Resin during the Evolution of Polymerization Shrinkage. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1483-1487	4.8	27
266	Rapid Crystallization of All-Inorganic CsPbBr Perovskite for High-Brightness Light-Emitting Diodes. <i>ACS Omega</i> , 2017 , 2, 2757-2764	3.9	26
265	Modulating carrier dynamics through perovskite film engineering. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27119-27123	3.6	26
264	A high voltage solar cell using a donor\(\text{Bcceptor}\) conjugated polymer based on pyrrolo[3,4-f]-2,1,3-benzothiadiazole-5,7-dione. Journal of Materials Chemistry A, 2014, 2, 17925-17933	13	26
263	Synthesis and characterization of a series of annelated benzotriazole based polymers with variable bandgap. <i>Journal of Organic Chemistry</i> , 2012 , 77, 10035-41	4.2	26
262	From benzobisthiadiazole, thiadiazoloquinoxaline to pyrazinoquinoxaline based polymers: effects of aromatic substituents on the performance of organic photovoltaics. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18528		26
261	Nanotubes-/nanowires-based, microfluidic-integrated transistors for detecting biomolecules. <i>Microfluidics and Nanofluidics</i> , 2010 , 9, 1185-1214	2.8	26
260	Organic FETs with HWCVD silicon nitride as a passivation layer and gate dielectric. <i>Thin Solid Films</i> , 2008 , 516, 770-772	2.2	26
259	Inducing formation of a corrugated, white-light emitting 2D lead-bromide perovskite via subtle changes in templating cation. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 889-893	7.1	26
258	A General Strategy toward Carbon Cloth-Based Hierarchical Films Constructed by Porous Nanosheets for Superior Photocatalytic Activity. <i>Small</i> , 2015 , 11, 2429-36	11	25
257	Poly(3,3?-didodecylquarterthiophene) field effect transistors with single-walled carbon nanotube based source and drain electrodes. <i>Applied Physics Letters</i> , 2007 , 91, 223512	3.4	25
256	Formation and performance of highly absorbing solar thermal coating based on carbon nanotubes and boehmite. <i>Energy Conversion and Management</i> , 2016 , 120, 287-293	10.6	25
255	Ruddlesden-Popper Perovskite Solar Cells. <i>CheM</i> , 2017 , 2, 326-327	16.2	24
254	Direct laser pruning of CdS(x)Se1-x nanobelts en route to a multicolored pattern with controlled functionalities. <i>ACS Nano</i> , 2012 , 6, 8298-307	16.7	23

253	Metal/metal sulfide functionalized single-walled carbon nanotubes: FTO-free counter electrodes for dye sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9906-11	3.6	23	
252	An XPS study of Al2Au and AlAu4 intermetallic oxidation. <i>Applied Surface Science</i> , 2007 , 253, 6217-6221	6.7	23	
251	Effect of interface modification on EM-induced degradation mechanisms in copper interconnects. <i>Thin Solid Films</i> , 2006 , 504, 279-283	2.2	23	
250	Three-dimensional simulation of void migration at the interface between thin metallic film and dielectric under electromigration. <i>Journal of Applied Physics</i> , 2005 , 98, 103508	2.5	23	
249	Colorful Perovskite Solar Cells: Progress, Strategies, and Potentials. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1321-1329	6.4	23	
248	Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells. <i>Nanoscale</i> , 2016 , 8, 4181-93	7.7	22	
247	Ultrafast long-range spin-funneling in solution-processed Ruddlesden-Popper halide perovskites. <i>Nature Communications</i> , 2019 , 10, 3456	17.4	22	
246	Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte. <i>Electrochimica Acta</i> , 2013 , 105, 447-454	6.7	22	
245	Simplified Architecture of a Fully Printable Perovskite Solar Cell Using a Thick Zirconia Layer. <i>Energy Technology</i> , 2017 , 5, 1866-1872	3.5	22	
244	Effect of Formamidinium/Cesium Substitution and PbI on the Long-Term Stability of Triple-Cation Perovskites. <i>ChemSusChem</i> , 2017 , 10, 3804-3809	8.3	22	
243	A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance. <i>Nanoscale Research Letters</i> , 2014 , 9, 14	5	22	
242	Control of charge mobility in single-crystal rubrene through surface chemistry. <i>Organic Electronics</i> , 2010 , 11, 1928-1934	3.5	22	
241	Thin film aluminumgold interface interactions. Scripta Materialia, 2007, 56, 549-552	5.6	22	
240	Characterization of nonconductive adhesives for flip-chip interconnection. <i>Journal of Electronic Materials</i> , 2004 , 33, 271-276	1.9	22	
239	Direct evidence of electromigration failure mechanism in dual-damascene Cu interconnect tree structures. <i>Applied Physics Letters</i> , 2005 , 87, 081909	3.4	22	
238	Effect of Cu3Sn coatings on electromigration lifetime improvement of Cu dual-damascene interconnects. <i>Applied Physics Letters</i> , 2005 , 87, 211103	3.4	22	
237	Modulating Cationic Ratios for High-Performance Transparent Solution-Processed Electronics. <i>ACS Applied Materials & District Materials</i>	9.5	22	
236	Role of Water in Suppressing Recombination Pathways in CHNHPbI Perovskite Solar Cells. <i>ACS Applied Materials & Discrete Solar Cells</i> , 11, 25474-25482	9.5	21	

235	Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through Estacked Viologens. <i>Chemistry of Materials</i> , 2018 , 30, 5827-5830	9.6	21
234	The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 940-945	7.1	21
233	Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices. <i>Plasmonics</i> , 2012 , 7, 677-684	2.4	21
232	Effect of surface treatment on electromigration in sub-micron Cu damascene interconnects. <i>Thin Solid Films</i> , 2004 , 462-463, 325-329	2.2	21
231	Doping and Switchable Photovoltaic Effect in Lead-Free Perovskites Enabled by Metal Cation Transmutation. <i>Advanced Materials</i> , 2018 , 30, e1802080	24	21
230	Effect of Excess PbI2 in Fully Printable Carbon-based Perovskite Solar Cells. <i>Energy Technology</i> , 2017 , 5, 1880-1886	3.5	20
229	Low-Temperature-Processed Inorganic Gate Dielectrics for Plastic-Substrate-Based Organic Field-Effect Transistors. <i>IEEE Electron Device Letters</i> , 2008 , 29, 698-700	4.4	20
228	Charging dynamics of discrete gold nanoparticle arrays self-assembled within a poly(styrene-b-4-vinylpyridine) diblock copolymer template. <i>Applied Physics Letters</i> , 2008 , 93, 222908	3.4	20
227	Tuning of electrical characteristics in networked carbon nanotube field-effect transistors using thiolated molecules. <i>Applied Physics Letters</i> , 2007 , 91, 103515	3.4	20
226	Temperature and Electrical Poling Effects on Ionic Motion in MAPbI3 Photovoltaic Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700265	21.8	19
225	Facile fabrication of graphene devices through metalloporphyrin induced photocatalytic reduction. <i>RSC Advances</i> , 2012 , 2, 4120	3.7	19
224	Electromigration in copper damascene interconnects: reservoir effects and failure analysis. <i>Surface and Coatings Technology</i> , 2005 , 198, 257-261	4.4	19
223	Design of Perovskite Thermally Co-Evaporated Highly Efficient Mini-Modules with High Geometrical Fill Factors. <i>Solar Rrl</i> , 2020 , 4, 2000473	7.1	19
222	High-surface-area, interconnected, nanofibrillar TiO2 structures as photoanodes in dye-sensitized solar cells. <i>Scripta Materialia</i> , 2013 , 68, 487-490	5.6	18
221	High Stability Bilayered Perovskites through Crystallization Driven Self-Assembly. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 28743-28749	9.5	18
220	Reducing mass-transport limitations in cobalt-electrolyte-based dye-sensitized solar cells by photoanode modification. <i>ChemPhysChem</i> , 2014 , 15, 1216-21	3.2	18
219	Paper like free-standing hybrid single-walled carbon nanotubes air electrodes for zinclir batteries. Journal of Solid State Electrochemistry, 2012 , 16, 1585-1593	2.6	18
218	Comparative studies on the electrochemical and optical properties of representative benzo[1,2-c;4,5-c?]bis[1,2,5]thiadiazole, [1,2,5]-thiadiazolo[3,4-g]quinoxaline and pyrazino[2,3-q]quinoxaline derivatives. Journal of Materials Chemistry C, 2013, 1, 1745	7.1	18

(2012-2006)

217	Improvement of Electromigration Lifetime of Submicrometer Dual-Damascene Cu Interconnects Through Surface Engineering. <i>Journal of the Electrochemical Society</i> , 2006 , 153, G840	3.9	18	
216	Electret mechanism, hysteresis, and ambient performance of sol-gel silica gate dielectrics in pentacene field-effect transistors. <i>Applied Physics Letters</i> , 2007 , 91, 242107	3.4	18	
215	Molecular-nanolayer-induced suppression of in-plane Cu transport at Cu-silica interfaces. <i>Applied Physics Letters</i> , 2007 , 90, 163507	3.4	18	
214	Study of Ru barrier failure in the Cu/Ru/Si system. <i>Journal of Materials Research</i> , 2007 , 22, 2505-2511	2.5	18	
213	Highly Active MnO Catalysts Integrated onto Fe2O3 Nanorods for Efficient Water Splitting. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600176	4.6	18	
212	Excellent Intrinsic Long-Term Thermal Stability of Co-Evaporated MAPbI3 Solar Cells at 85 LC. <i>Advanced Functional Materials</i> , 2021 , 31, 2100557	15.6	18	
211	Localized Traps Limited Recombination in Lead Bromide Perovskites. <i>Advanced Energy Materials</i> , 2019 , 9, 1803119	21.8	17	
210	Printing materials for electronic devices. <i>International Journal of Materials Research</i> , 2010 , 101, 236-250	0 0.5	17	
209	Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors. <i>Applied Physics Letters</i> , 2008 , 93, 183503	3.4	17	
208	The effect of line width on stress-induced voiding in Cu dual damascene interconnects. <i>Thin Solid Films</i> , 2006 , 504, 298-301	2.2	17	
207	Direct evidence of Cu/cap/liner edge being the dominant electromigration path in dual damascene Cu interconnects. <i>Applied Physics Letters</i> , 2007 , 90, 052106	3.4	17	
206	Microstructural Evolution of Annealed Ruthenium Nitrogen Films. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, P15		17	
205	Characterization of tetra methyl cyclo tetra siloxanes-based low-k dielectric film. <i>Thin Solid Films</i> , 2004 , 462-463, 213-218	2.2	17	
204	Oxidation of bulk AuAl intermetallics. <i>Thin Solid Films</i> , 2004 , 462-463, 357-362	2.2	17	
203	Investigating the structurefunction relationship in triple cation perovskite nanocrystals for light-emitting diode applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11805-11821	7.1	17	
202	Hot Carriers in Halide Perovskites: How Hot Truly?. Journal of Physical Chemistry Letters, 2020 , 11, 2743	-257.50	16	
201	Controlling the film structure by regulating 2D Ruddlesden P opper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5874-5	5881	16	
200	Solution synthesis of CdIn2S4 nanocrystals and their photoelectrical application. <i>Materials Letters</i> , 2012 , 79, 216-218	3.3	16	

199	Influence of radio frequency sputtering power towards the properties of indium zinc oxide semiconducting films. <i>Scripta Materialia</i> , 2009 , 60, 48-51	5.6	16
198	Synthesis and characterization of new thieno[3,2-b]thiophene derivatives. <i>Molecules</i> , 2012 , 17, 12163-7	14.8	16
197	Effect of surfactants on MWCNT-reinforced solgel silica dielectric composites. <i>Scripta Materialia</i> , 2007 , 57, 1157-1160	5.6	16
196	Enhanced Functional and Structural Characteristics of Poly(vinylidene-trifluoroethylene) Copolymer Thin Films by Corona Poling. <i>Journal of the Electrochemical Society</i> , 2007 , 154, G224	3.9	16
195	The influence of temperature and dielectric materials on stress induced voiding in Cu dual damascene interconnects. <i>Thin Solid Films</i> , 2006 , 504, 161-165	2.2	16
194	Effect of temperature on the cure shrinkage measurement of non-conductive adhesives for flip chip interconnects. <i>Journal of Materials Research</i> , 2005 , 20, 1324-1329	2.5	16
193	Correlation of material properties to reliability performance of anisotropic conductive adhesive flip chip packages. <i>IEEE Transactions on Components and Packaging Technologies</i> , 2005 , 28, 157-164		16
192	Perovskite nanostructures: Leveraging quantum effects to challenge optoelectronic limits. <i>Materials Today</i> , 2020 , 33, 122-140	21.8	16
191	Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr3 with In Situ Zn2+ Addition. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 4002-4011	4	16
190	Diffusive and Drift Halide Perovskite Memristive Barristors as Nociceptive and Synaptic Emulators for Neuromorphic Computing. <i>Advanced Materials</i> , 2021 , 33, 2007851	24	16
189	Cesium Lead Halide Perovskite Nanocrystals Prepared by Anion Exchange for Light-Emitting Diodes. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1766-1774	5.6	15
188	Metal Coordination Sphere Deformation Induced Highly Stokes-Shifted, Ultra Broadband Emission in 2D Hybrid Lead-Bromide Perovskites and Investigation of Its Origin. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10791-10796	16.4	15
187	Zn-Doped SnO2Nanocrystals as Efficient DSSC Photoanode Material and Remarkable Photocurrent Enhancement by Interface Modification. <i>Journal of the Electrochemical Society</i> , 2012 , 159, H735-H739	3.9	15
186	Modulating the optical and electrical properties of all metal oxide solar cells through nanostructuring and ultrathin interfacial layers. <i>Electrochimica Acta</i> , 2012 , 85, 486-491	6.7	15
185	Solution processable ter-anthrylene-ethynylenes semiconductors: thin film transistor properties and STM study on HOPG and Au(111). <i>Journal of Materials Chemistry</i> , 2010 , 20, 2448		15
184	Achieving Sub-0.1 eV Hole Schottky Barrier Height for NiSiGe on SiGe by Aluminum Segregation. Journal of the Electrochemical Society, 2009 , 156, H233	3.9	15
183	Detailed profiling of CNTs arrays along the growth window in a floating catalyst reactor. <i>Applied Surface Science</i> , 2009 , 255, 7243-7250	6.7	15
182	Heme-Enabled Electrical Detection of Carbon Monoxide at Room Temperature Using Networked Carbon Nanotube Field-Effect Transistors. <i>Chemistry of Materials</i> , 2007 , 19, 6059-6061	9.6	15

181	Anomalous polarization switching in organic ferroelectric field effect transistors. <i>Applied Physics Letters</i> , 2007 , 91, 042909	3.4	15	
180	Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation. <i>International Journal of Materials Research</i> , 2005 , 96, 966-971		15	
179	Characterization of optical properties of acrylate based adhesives exposed to different temperature conditions. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 950-956	2.9	15	
178	Cubic NaSbS as an Ionic-Electronic Coupled Semiconductor for Switchable Photovoltaic and Neuromorphic Device Applications. <i>Advanced Materials</i> , 2020 , 32, e1906976	24	15	
177	Halide Perovskite Quantum Dots Photosensitized-Amorphous Oxide Transistors for Multimodal Synapses. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000514	6.8	15	
176	Co-Evaporated MAPbI3 with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible p-i-n Perovskite Solar Cells. <i>Advanced Functional Materials</i> ,2103252	15.6	15	
175	Broadband emission from zero-dimensional CsPbI perovskite nanocrystals RSC Advances, 2020, 10, 134	3 <u>.1</u> 713	436	
174	Targeted Synthesis of Trimeric Organic B romoplumbate Hybrids That Display Intrinsic, Highly Stokes-Shifted, Broadband Emission. <i>Chemistry of Materials</i> , 2020 , 32, 4431-4441	9.6	14	
173	Hollow Spheres: MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics (Adv. Funct. Mater. 15/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2154-2154	15.6	14	
172	Chemical welding of binary nanoparticles: room temperature sintering of CuSe and In2S3 nanoparticles for solution-processed CuInS(x)Se(1-x) solar cells. <i>Chemical Communications</i> , 2013 , 49, 5351-3	5.8	14	
171	Effect of gas pressure on electron field emission from carbon nanotube forests. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6575-9	1.3	14	
170	Investigation of photophysical, morphological and photovoltaic behavior of poly(p-phenylene vinylene) based polymer/oligomer blends. <i>Thin Solid Films</i> , 2010 , 518, 5292-5299	2.2	14	
169	Steady-state and transient photocurrents in rubrene single crystal free-space dielectric transistors. <i>Applied Physics Letters</i> , 2007 , 91, 212108	3.4	14	
168	Fiber misalignment in silicon V-groove based optical modules. <i>Optical Fiber Technology</i> , 2006 , 12, 170-18	8 4 .4	14	
167	Infrared reflectance spectra of doped BaTi4O9. Journal of Solid State Chemistry, 1991, 95, 275-282	3.3	14	
166	Highly stable and efficient planar perovskite solar cells using ternary metal oxide electron transport layers. <i>Journal of Power Sources</i> , 2020 , 448, 227362	8.9	14	
165	Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. <i>Chemistry of Materials</i> , 2021 , 33, 2387-2397	9.6	14	
164	Stable Sn doped FAPbI nanocrystals for near-infrared LEDs. <i>Chemical Communications</i> , 2019 , 55, 5451-54	45.8	13	

163	Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles. <i>Chemical Communications</i> , 2016 , 52, 11351-11354	5.8	13
162	Photovoltage enhancement from cyanobiphenyl liquid crystals and 4-tert-butylpyridine in Co(II/III) mediated dye-sensitized solar cells. <i>Chemical Communications</i> , 2013 , 49, 9101-3	5.8	13
161	Decoupling light absorption and charge transport properties in near IR-sensitized Fe2O3 regenerative cells. <i>Energy and Environmental Science</i> , 2013 , 6, 3280	35.4	13
160	Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 08MC05	1.4	13
159	Novel Zn-Sn-O nanocactus with excellent transport properties as photoanode material for high performance dye-sensitized solar cells. <i>Nanoscale</i> , 2011 , 3, 4640-6	7.7	13
158	Investigations of enhanced device characteristics in pentacene-based field effect transistors with sol-gel interfacial layer. <i>Applied Physics Letters</i> , 2007 , 90, 122112	3.4	13
157	Nitrogen doped cuprous oxide as low cost hole-transporting material for perovskite solar cells. <i>Scripta Materialia</i> , 2018 , 153, 104-108	5.6	13
156	Evolution of Perovskite Crystallization in Printed Mesoscopic Perovskite Solar Cells. <i>Energy Technology</i> , 2019 , 7, 1900343	3.5	12
155	Modulating Excitonic Recombination Effects through One-Step Synthesis of Perovskite Nanoparticles for Light-Emitting Diodes. <i>ChemSusChem</i> , 2017 , 10, 3818-3824	8.3	12
154	Enhanced Coverage of All-Inorganic Perovskite CsPbBr3 through Sequential Deposition for Green Light-Emitting Diodes. <i>Energy Technology</i> , 2017 , 5, 1859-1865	3.5	12
153	Enhancement of Carrier Mobilities of Organic Semiconductors on Sol © el Dielectrics: Investigations of Molecular Organization and Interfacial Chemistry Effects. <i>Advanced Functional Materials</i> , 2009 , 19, 378-385	15.6	12
152	Low-voltage organic ferroelectric field effect transistors using LangmuirBchaefer films of poly(vinylidene fluoride-trifluororethylene). <i>Organic Electronics</i> , 2009 , 10, 145-151	3.5	12
151	Interface transformations in thin film aluminumgold diffusion couples. <i>Thin Solid Films</i> , 2007 , 515, 5454-	- 5 .461	12
150	Investigation of cure kinetics and its effect on adhesion strength of nonconductive adhesives used in flip chip assembly. <i>IEEE Transactions on Components and Packaging Technologies</i> , 2006 , 29, 71-79		12
149	Hybrid organicIhorganic halide perovskites for scaled-in neuromorphic devices. <i>MRS Bulletin</i> , 2020 , 45, 641-648	3.2	12
148	Design of 2D Templating Molecules for Mixed-Dimensional Perovskite Light-Emitting Diodes. <i>Chemistry of Materials</i> , 2020 , 32, 8097-8105	9.6	12
147	The Physics of Interlayer Exciton Delocalization in Ruddlesden-Popper Lead Halide Perovskites. <i>Nano Letters</i> , 2021 , 21, 405-413	11.5	12
146	Enhanced Efficiency of Dye-Sensitized Solar Cells with Mesoporous Macroporous TiO2 Photoanode Obtained Using ZnO Template. <i>Journal of Electronic Materials</i> , 2017 , 46, 3801-3807	1.9	11

(2006-2019)

145	Effects of energetics with {001} facet-dominant anatase TiO2 scaffold on electron transport in CH3NH3PbI3 perovskite solar cells. <i>Electrochimica Acta</i> , 2019 , 300, 445-454	6.7	11
144	Direct Band Gap Mixed-Valence OrganicIhorganic Gold Perovskite as Visible Light Absorbers. <i>Chemistry of Materials</i> , 2020 , 32, 6318-6325	9.6	11
143	Perovskite templating via a bathophenanthroline additive for efficient light-emitting devices. Journal of Materials Chemistry C, 2018 , 6, 2295-2302	7.1	11
142	Grain Size Modulation and Interfacial Engineering of CH NH PbBr Emitter Films through Incorporation of Tetraethylammonium Bromide. <i>ChemPhysChem</i> , 2018 , 19, 1075-1080	3.2	11
141	A ZnO nanowire resistive switch. <i>Applied Physics Letters</i> , 2013 , 103, 123114	3.4	11
140	One-pot synthesis of 4,8-dibromobenzo[1,2-d;4,5-d']bistriazole and synthesis of its derivatives as new units for conjugated materials. <i>Organic Letters</i> , 2012 , 14, 532-5	6.2	11
139	Substituent effect on the electronic properties of pyrazino[2,3-g] quinoxaline molecules. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17798		11
138	Improved pentacene device characteristics with solgel SiO2 dielectric films. <i>Organic Electronics</i> , 2007 , 8, 455-459	3.5	11
137	Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. <i>Nanophotonics</i> , 2021 , 10, 2103-2143	6.3	11
136	Four-Terminal Perovskite on Silicon Tandem Solar Cells Optimal Measurement Schemes. <i>Energy Technology</i> , 2020 , 8, 1901267	3.5	11
135	Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3878-3885	6.4	11
134	Hybrid 2D [Pb(CH3NH2)I2]n Coordination Polymer Precursor for Scalable Perovskite Deposition. <i>ACS Energy Letters</i> , 2020 , 5, 2305-2312	20.1	10
133	Influence of size and shape of sub-micrometer light scattering centers in ZnO-assisted TiO 2 photoanode for dye-sensitized solar cells. <i>Physica B: Condensed Matter</i> , 2018 , 532, 225-229	2.8	10
132	Highly Selective Solar Thermal Sprayable Coating Based on Carbon Nanotubes. <i>Solar Rrl</i> , 2017 , 1, 17000	8,01	10
131	Fabrication of Carbon Nanotube/Indium Tin Oxide Inverse Tandem Absorbing Coatings with Tunable Spectral Selectivity for Solar Thermal Applications. <i>Energy Technology</i> , 2015 , 3, 1045-1050	3.5	10
130	Fabrication of unipolar graphene field-effect transistors by modifying source and drain electrode interfaces with zinc porphyrin. <i>ACS Applied Materials & District Research</i> , 1434-9	9.5	10
129	Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches. <i>RSC Advances</i> , 2012 , 2, 9590	3.7	10
128	Direct Measurement of Cure-Induced Stress in Thermosetting Materials by Means of a Dynamic Mechanical Analyzer. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1393-1397	4.8	10

127	Refractive indices variation with temperature and humidity of optical adhesive. <i>Journal of Electronic Materials</i> , 2005 , 34, 1378-1384	1.9	10
126	Deterministic Light Yield, Fast Scintillation, and Microcolumn Structures in Lead Halide Perovskite Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 14082-14088	3.8	10
125	Slot-die coated methylammonium-free perovskite solar cells with 18% efficiency. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 230, 111189	6.4	10
124	Modulating light propagation in ZnO-CuD-inverse opal solar cells for enhanced photocurrents. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 21694-701	3.6	9
123	Nanocrystalline copper indium selenide (CuInSe2) particles for solar energy harvesting. <i>RSC Advances</i> , 2013 , 3, 9829	3.7	9
122	Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 19314-7	3.6	9
121	Physical and Electrical Properties of Single Zn[sub 2]SnO[sub 4] Nanowires. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, K5		9
120	Integration of ink jet and transfer printing for device fabrication using nanostructured materials. <i>Carbon</i> , 2009 , 47, 321-324	10.4	9
119	Charge transport in hierarchical Fe2O3 nanostructures. <i>Applied Physics Letters</i> , 2011 , 99, 132105	3.4	9
118	Ink and moisture sorption study in UV-curable polyurethane acrylate. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 1985-1991	2.9	9
117	Timelemperature transformation (TTT) cure diagram of a fast cure non-conductive adhesive. <i>Thin Solid Films</i> , 2006 , 504, 331-335	2.2	9
116	Effects of O2 and He on the properties of the trimethyl silane based low-k films. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 1030		9
115	The effects of Ca and Pd dopants on gold bonding wire and gold rod. <i>Thin Solid Films</i> , 2004 , 462-463, 351-356	2.2	9
114	Effects of CO2 and O2 on the property of tetra methyl tetra cyclo siloxanes based low-k film. <i>Thin Solid Films</i> , 2005 , 472, 195-202	2.2	9
113	Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer. <i>Applied Physics Letters</i> , 2005 , 87, 261906	3.4	9
112	White Electroluminescence from Perovskite Drganic Heterojunction. ACS Energy Letters, 2020, 5, 2690-2	269 71	9
111	Highly Efficient Perovskite Solar Cells with Ba(OH)2 Interface Modification of Mesoporous TiO2 Electron Transport Layer. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5847-5852	6.1	9
110	Large area, high efficiency and stable perovskite solar cells enabled by fine control of intermediate phase. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 201, 110113	6.4	8

(2009-2019)

109	Cesium Oleate Passivation for Stable Perovskite Photovoltaics. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 27882-27889	9.5	8
108	MODULATING CH3NH3Pbi3 PEROVSKITE CRYSTALLIZATION BEHAVIOR THROUGH PRECURSOR CONCENTRATION. <i>Nano</i> , 2014 , 09, 1440003	1.1	8
107	Synthesis, characterization and electrical properties of hybrid Zn2GeO4InO beaded nanowire arrays. <i>Journal of Crystal Growth</i> , 2012 , 346, 32-39	1.6	8
106	Determining the Conductivities of the Two Charge Transport Phases in Solid-State Dye-Sensitized Solar Cells by Impedance Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10980-10989	3.8	8
105	Solution processable nanoparticles as high-k dielectric for organic field effect transistors. <i>Organic Electronics</i> , 2010 , 11, 1660-1667	3.5	8
104	Novel self assembled monolayers of allyl phenyl thiophene ether as potential dielectric material for organic thin film transistors. <i>Thin Solid Films</i> , 2008 , 516, 5645-5648	2.2	8
103	Modification of Ta/Polymeric Low-k Interface by Electron-Beam Treatment. <i>Journal of the Electrochemical Society</i> , 2006 , 153, G30	3.9	8
102	Reservoir effect and the role of low current density regions on electromigration lifetimes in copper interconnects. <i>Journal of Materials Research</i> , 2006 , 21, 2241-2245	2.5	8
101	Characterization and modeling of static and cyclic relaxation in nonconductive adhesives. <i>Journal of Electronic Materials</i> , 2004 , 33, 1041-1047	1.9	8
100	Comparative Study of Trimethyl Silane and Tetramethylcyclotetrasiloxane-Based Low-k Films. Journal of the Electrochemical Society, 2005 , 152, G246	3.9	8
99	Sub-Bandgap Energy Photoresponse of Individual V2O5 Nanowires. <i>Nanoscience and Nanotechnology Letters</i> , 2012 , 4, 716-719	0.8	8
98	Additives in Halide Perovskite for Blue-Light-Emitting Diodes: Passivating Agents or Crystallization Modulators?. <i>ACS Energy Letters</i> ,4265-4272	20.1	8
97	Disordered Polymer Antireflective Coating for Improved Perovskite Photovoltaics. <i>ACS Photonics</i> , 2020 , 7, 1971-1977	6.3	8
96	Inducing Isotropic Growth in Multidimensional Cesium Lead Halide Perovskite Nanocrystals. <i>ChemPlusChem</i> , 2018 , 83, 514-520	2.8	8
95	Solvent selection for highly reproducible carbon-based mixed-cation hybrid lead halide perovskite solar cells via adduct approach. <i>Solar Energy</i> , 2020 , 199, 761-771	6.8	7
94	Heterogeneous electron transporting layer for reproducible, efficient and stable planar perovskite solar cells. <i>Journal of Power Sources</i> , 2019 , 437, 226907	8.9	7
93	Morphology and stoichiometry control of hierarchical CuInSe2/SnO2 nanostructures by directed electrochemical assembly for solar energy harvesting. <i>Electrochemistry Communications</i> , 2012 , 15, 18-21	5.1	7
92	Acetic acid effects on enhancement of growth rate and reduction of amorphous carbon deposition on CNT arrays along a growth window in a floating catalyst reactor. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 97, 417-424	2.6	7

91	Effects of calcium on the mechanical properties of ultra-fine grained gold wires. <i>Journal of Alloys and Compounds</i> , 2006 , 415, 193-197	5.7	7
90	Adaptive Latent Inhibition in Associatively Responsive Optoelectronic Synapse. <i>Advanced Functional Materials</i> , 2021 , 31, 2100807	15.6	7
89	Room temperature synthesis of low-dimensional rubidium copper halide colloidal nanocrystals with near unity photoluminescence quantum yield. <i>Nanoscale</i> , 2021 , 13, 59-65	7.7	7
88	Molecular Engineering of Pure 2D Lead-Iodide Perovskite Solar Absorbers Displaying Reduced Band Gaps and Dielectric Confinement. <i>ChemSusChem</i> , 2020 , 13, 2693-2701	8.3	6
87	Charge Transport in Organometal Halide Perovskites 2016 , 201-222		6
86	Optimal Shell Thickness of Metal@Insulator Nanoparticles for Net Enhancement of Photogenerated Polarons in P3HT Films. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 2464-9	9.5	6
85	Perturbation-Induced Seeding and Crystallization of Hybrid Perovskites over Surface-Modified Substrates for Optoelectronic Devices. <i>ACS Applied Materials & Devices</i> , 2019 , 11, 27727-27734	9.5	6
84	Rapid reversible electromigration of intercalated K ions within individual MoO3 nanobundle. <i>Journal of Applied Physics</i> , 2013 , 113, 024311	2.5	6
83	Design of single peptides for self-assembled conduction channels. <i>Nanotechnology</i> , 2011 , 22, 215606	3.4	6
82	Pentacene Organic Field Effect Transistors on Flexible substrates with polymer dielectrics 2007,		6
81	Effects of calcium and palladium on mechanical properties and stored energy of hard-drawn gold bonding wire. <i>Thin Solid Films</i> , 2004 , 462-463, 346-350	2.2	6
80	Formation of Corrugated = 1 2D Tin Iodide Perovskites and Their Use as Lead-Free Solar Absorbers. <i>ACS Nano</i> , 2021 , 15, 6395-6409	16.7	6
79	Carrier cascade: Enabling high performance perovskite light-emitting diodes (PeLEDs). <i>Current Opinion in Electrochemistry</i> , 2018 , 11, 91-97	7.2	6
78	Precursor non-stoichiometry to enable improved CHNHPbBr nanocrystal LED performance. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 5918-5925	3.6	5
77	A Model for Understanding Electromigration-Induced Void Evolution in Dual-Inlaid Cu Interconnect Structures. <i>Journal of Electronic Materials</i> , 2012 , 41, 568-572	1.9	5
76	Formation and stability of pyrochlore in sputtered SBT thin films. <i>Advances in Applied Ceramics</i> , 2007 , 106, 180-185	2.3	5
75	Effect of electron beam treatment on adhesion of Ta/polymeric low-k interface. <i>Applied Physics Letters</i> , 2006 , 88, 233510	3.4	5
74	A direct measurement of electromigration induced drift velocity in Cu dual damascene interconnects. <i>Microelectronics Reliability</i> , 2006 , 46, 1392-1395	1.2	5

(2018-2021)

73	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Falldes Into Power Generators. <i>Advanced Materials</i> , 2021 , e2104661	24	5	
7 2	Interlayer Engineering for Flexible Large-Area Planar Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 777-784	6.1	5	
71	Potassium Acetate-Based Treatment for Thermally Co-Evaporated Perovskite Solar Cells. <i>Coatings</i> , 2020 , 10, 1163	2.9	5	
70	Unveiling the role of carbon black in printable mesoscopic perovskite solar cells. <i>Journal of Power Sources</i> , 2021 , 501, 230019	8.9	5	
69	An experimentally supported model for the origin of charge transport barrier in Zn(O,S)/CIGSSe solar cells. <i>Applied Physics Letters</i> , 2016 , 108, 043505	3.4	5	
68	Photoactive nanocrystals by low-temperature welding of copper sulfide nanoparticles and indium sulfide nanosheets. <i>ChemSusChem</i> , 2014 , 7, 3290-4	8.3	4	
67	Electrically driven incandescence of carbon nanotubes in controlled gaseous environments. <i>Scripta Materialia</i> , 2011 , 64, 564-567	5.6	4	
66	Direct Deposition of Micron-Thick Aligned CeramicTiO2Nanofibrous Film on FTOs by Double-Needle Electrospinning Using Air-Turbulence Shielded Disc Collector. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-7	3.2	4	
65	The effects of carrier gas and liquid feed flow rates on longitudinal patterns of CNT growth. <i>Materials Chemistry and Physics</i> , 2010 , 124, 1139-1145	4.4	4	
64	Parametric study of sputtered Sr-deficient SrBi2Ta2O9 thin films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2006 , 24, 1992-1998	2.9	4	
63	Whole-field optical strain sensor using a microlens array. Optical Engineering, 2007, 46, 034403	1.1	4	
62	Effect of in-line electron beam treatment on the electrical performance of Cu/organic low-k damascene interconnects. <i>IEEE Electron Device Letters</i> , 2005 , 26, 448-450	4.4	4	
61	Effect of process parameters on sidewall roughness in polymeric optical waveguides. <i>Thin Solid Films</i> , 2004 , 462-463, 471-476	2.2	4	
60	Low-Temperature Atomic Layer Deposited Electron Transport Layers for Co-Evaporated Perovskite Solar Cells. <i>Solar Rrl</i> ,2100842	7.1	4	
59	Advances and Potentials of NiO x Surface Treatments for pIB Perovskite Solar Cells. <i>Solar Rrl</i> ,2100700	7.1	4	
58	Enhanced stability and photovoltaic performance of planar perovskite solar cells through anilinium thiobenzoate interfacial engineering. <i>Journal of Power Sources</i> , 2020 , 479, 228811	8.9	4	
57	Vacuum-Processed Metal Halide Perovskite Light-Emitting Diodes: Prospects and Challenges. <i>ChemPlusChem</i> , 2021 , 86, 558-573	2.8	4	
56	Ultrafast THz photophysics of solvent engineered triple-cation halide perovskites. <i>Journal of Applied Physics</i> , 2018 , 124, 215106	2.5	4	

55	Optically Pumped Distributed Feedback Laser from Organo-Lead Iodide Perovskite Thin Films 2015 ,		3
54	. IEEE Electron Device Letters, 2020 , 41, 852-855	4.4	3
53	Plasmonic Organic Solar Cells. SpringerBriefs in Applied Sciences and Technology, 2017,	0.4	3
52	Cu-S Nanocabbage Films with Tunable Optical Bandgap and Substantially Improved Stability by Pulse Electrodeposition. <i>Journal of the Electrochemical Society</i> , 2011 , 158, E60	3.9	3
51	Impact of Thermal, Moisture, and Mechanical Loading Conditions on Interfacial Fracture Toughness of Adhesively Bonded Joints. <i>Journal of Electronic Materials</i> , 2007 , 36, 110-116	1.9	3
50	Optical coupling efficiency studies of passively aligned CWDM optical modules. <i>Optics Communications</i> , 2005 , 248, 191-199	2	3
49	Reservoir effect on electromigration mechanisms in dual-damascene Cu interconnect structures. <i>Microelectronic Engineering</i> , 2005 , 82, 675-679	2.5	3
48	Suppressing the EPhase and Photoinstability through a Hypophosphorous Acid Additive in Carbon-Based Mixed-Cation Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6585-659	2 ^{3.8}	3
47	Dual Role of Cu-Chalcogenide as Hole-Transporting Layer and Interface Passivator for p il Architecture Perovskite Solar Cell. <i>Advanced Functional Materials</i> , 2021 , 31, 2103807	15.6	3
46	Regulating Vertical Domain Distribution in Ruddlesden-Popper Perovskites for Electroluminescence Devices. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7949-7955	6.4	3
45	Inducing thermoreversible optical transitions in urethane-acrylate systems via ionic liquid incorporation for stretchable smart devices. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13615-13624	13	3
44	Alkali Additives Enable Efficient Large Area (>55 cm 2) Slot-Die Coated Perovskite Solar Modules. <i>Advanced Functional Materials</i> ,2113026	15.6	3
43	Energy band and optical modeling of charge transport mechanism and photo-distribution of MoO3/Al-doped MoO3 in organic tandem cells. <i>Functional Materials Letters</i> , 2020 , 13, 2051003	1.2	2
42	Quantifying the Usefulness of Oxide-Encapsulated Silver Nanoparticles in Semiconducting Films. <i>Plasmonics</i> , 2017 , 12, 1673-1683	2.4	2
41	Top Down Scale-Up of Semiconducting Nanostructures for Large Area Electronics. <i>Journal of Display Technology</i> , 2014 , 10, 660-665		2
40	Dye-Sensitized Solar Cells Based on Tin Oxide Nanowire Networks. <i>Nanoscience and Nanotechnology Letters</i> , 2012 , 4, 733-737	0.8	2
39	Investigation of sensing mechanism and signal amplification in carbon nanotube based microfluidic liquid-gated transistors via pulsating gate bias. <i>Lab on A Chip</i> , 2010 , 10, 1454-8	7.2	2
38	Effect of package construction on thermal performance of plastic IC packages		2

(2021-2007)

37	Evolution of Contact Resistance during the Bonding Process of NCA Flip-Chip Interconnections. Journal of Electronic Materials, 2007 , 36, 1719-1723	1.9	2
36	Modeling of smoothening effect on morphologies of annealed submicron nickel particles used for electrically conductive adhesives. <i>Journal of Applied Physics</i> , 2006 , 100, 084302	2.5	2
35	Analytical modeling of reservoir effect on electromigration in Cu interconnects. <i>Journal of Materials Research</i> , 2007 , 22, 152-156	2.5	2
34	Reliability studies of barrier layers for Cu/PAE low-k interconnects. <i>Microelectronics Reliability</i> , 2006 , 46, 1309-1314	1.2	2
33	Effect of porosity and adhesion promoter layer on adhesion energy of nanoporous inorganic low- ^[1] <i>Thin Solid Films</i> , 2006 , 504, 213-217	2.2	2
32	Reversible Photochromism in <110> Oriented Layered Halide Perovskite ACS Nano, 2022,	16.7	2
31	Tailoring the Energy Manifold of Quasi-Two-Dimensional Perovskites for Efficient Carrier Extraction. <i>Advanced Energy Materials</i> , 2103556	21.8	2
30	Improving the Performance of Carbon-Based Perovskite Solar Modules (70 cm2) by Incorporating Cesium Halide in Mesoporous TiO2. <i>ACS Applied Energy Materials</i> , 2021 , 4, 249-258	6.1	2
29	Effects of All-Organic Interlayer Surface Modifiers on the Efficiency and Stability of Perovskite Solar Cells. <i>ChemSusChem</i> , 2021 , 14, 1524-1533	8.3	2
28	Excitonics in 2D Perovskites 2018 , 55-79		2
27	One-Pot Synthesis and Structural Evolution of Colloidal Cesium Lead Halide-Lead Sulfide Heterostructure Nanocrystals for Optoelectronic Applications. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9569-9578	6.4	2
26	Metal Coordination Sphere Deformation Induced Highly Stokes-Shifted, Ultra Broadband Emission in 2D Hybrid Lead-Bromide Perovskites and Investigation of Its Origin. <i>Angewandte Chemie</i> , 2020 , 132, 10883-10888	3.6	1
25	Complementary Organic Circuits Using Evaporated \$ hbox{F}_{16}hbox{CuPc}\$ and Inkjet Printing of PQT. <i>IEEE Electron Device Letters</i> , 2010 ,	4.4	1
24	Control of Electronic Properties of Organic Semiconductor. <i>Advanced Materials Research</i> , 2011 , 287-290, 725-728	0.5	1
23	Multipoint diffraction strain sensor: an add-on to moire interferometer 2006,		1
22	Static and cyclic relaxation studies in nonconductive adhesives. <i>Thin Solid Films</i> , 2004 , 462-463, 419-426	2.2	1
21	Adhesion study of tetra methyl cyclo tetra siloxanes (TMCTS) and tri methyl silane (3MS)-based low-k films. <i>Microelectronic Engineering</i> , 2005 , 81, 35-43	2.5	1

19	Small-area Passivated Contact monoPolyTM Silicon Solar Cells for Tandem Device Integration 2019,		1
18	Tunable Electroluminescence for Pure White Emission From a Perovskite-Based LED. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001227	6.4	1
17	Working Principles of Perovskite Solar Cells 2018 , 81-99		1
16	Novel Spin Physics in OrganicIhorganic Perovskites 2018 , 249-271		1
15	Perovskite Solar Cells for Photoelectrochemical Water Splitting and CO2 Reduction 2018, 273-292		1
14	Electromigration of lower and upper Cu lines in dual-damascene Cu interconnects. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 766, 3131		O
13	Toward Efficient and Stable Perovskite Photovoltaics with Fluorinated Phosphonate Salt Surface Passivation. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2716-2723	6.1	О
12	The Photophysics of Halide Perovskite Solar Cells 2018 , 101-130		O
11	Plasmonic Entities within the Charge Transporting Layer. <i>SpringerBriefs in Applied Sciences and Technology</i> , 2017 , 47-80	0.4	
10	Misalignment of the optical fibers in multi-channel V-grooves. <i>Thin Solid Films</i> , 2006 , 504, 341-345	2.2	
9	The Effect of Immersion Sn coating on the Electromigration Failure Mechanism and Lifetimes of Cu Dual Damascene Interconnects. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 863, B9.9-1		
8	Ab Initio and First Principles Studies of Halide Perovskites 2018 , 25-53		
7	Charge-Selective Contact Materials for Perovskite Solar Cells (PSCs) 2018, 131-153		
6	Beyond Methylammonium Lead Iodide Perovskite 2018, 155-181		
5	Halide Perovskite Tandem Solar Cells 2018 , 183-197		
4	Perovskite Light-Emitting Devices [Fundamentals and Working Principles 2018 , 199-221		
3	Toward Electrically Driven Perovskite Lasers [Prospects and Obstacles 2018, 223-247		
2	Dual Role of Cu-Chalcogenide as Hole-Transporting Layer and Interface Passivator for p IB Architecture Perovskite Solar Cell (Adv. Funct. Mater. 38/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170282	15.6	

Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation. *International Journal of Materials Research*, **2022**, 96, 966-971

0.5