
Isabel Oller Alberola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7130175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 2011, 409, 4141-4166.	8.0	1,946
2	Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 2013, 47, 1521-1528.	11.3	254
3	Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research, 2009, 43, 661-668.	11.3	243
4	Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. Journal of Hazardous Materials, 2015, 286, 261-268.	12.4	239
5	Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012, 211-212, 131-137.	12.4	199
6	Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. Journal of Hazardous Materials, 2006, 138, 507-517.	12.4	170
7	Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 2016, 42, 15-23.	4.0	152
8	Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B: Environmental, 2012, 125, 51-58.	20.2	141
9	Solar photocatalytic degradation and detoxification of EU priority substances. Catalysis Today, 2005, 101, 203-210.	4.4	135
10	Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. Water Research, 2009, 43, 653-660.	11.3	133
11	Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials, 2006, 138, 363-369.	12.4	132
12	Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Research, 2014, 64, 23-31.	11.3	131
13	Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 2006, 64, 272-281.	20.2	130
14	Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton. Water Research, 2006, 40, 1086-1094.	11.3	120
15	Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study. Applied Catalysis B: Environmental, 2012, 121-122, 20-29.	20.2	115
16	Comparison of several combined/integrated biological-AOPs setups for the treatment of municipal landfill leachate: Minimization of operating costs and effluent toxicity. Chemical Engineering Journal, 2011, 172, 250-257.	12.7	110
17	Detoxification of wastewater containing five common pesticides by solar AOPs–biological coupled system. Catalysis Today, 2007, 129, 69-78.	4.4	101
18	Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research, 2019, 156, 232-240.	11.3	96

#	Article	IF	CITATIONS
19	Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 205-214.	3.9	93
20	Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 354-363.	3.9	90
21	Evaluation of operational parameters involved in solar photo-Fenton degradation of a commercial pesticide mixture. Catalysis Today, 2009, 144, 94-99.	4.4	90
22	Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation). Separation and Purification Technology, 2014, 122, 515-522.	7.9	84
23	Optimization of electrocatalytic H2O2 production at pilot plant scale for solar-assisted water treatment. Applied Catalysis B: Environmental, 2019, 242, 327-336.	20.2	83
24	A novel TiO2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Solar Energy, 2004, 77, 649-655.	6.1	80
25	Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. Journal of Hazardous Materials, 2017, 323, 442-451.	12.4	79
26	Decontamination of industrial wastewater containing pesticides by combining large-scale homogeneous solar photocatalysis and biological treatment. Chemical Engineering Journal, 2010, 160, 447-456.	12.7	77
27	Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment. Chemical Engineering Journal, 2017, 318, 161-170.	12.7	75
28	Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation. Journal of Hazardous Materials, 2008, 155, 342-349.	12.4	73
29	Development of TiO2-C photocatalysts for solar treatment of polluted water. Carbon, 2017, 122, 361-373.	10.3	68
30	A combined solar photocatalytic-biological field system for the mineralization of an industrial pollutant at pilot scale. Catalysis Today, 2007, 122, 150-159.	4.4	67
31	Comparison of UV/H 2 O 2 , UV/S 2 O 8 2â^' , solar/Fe(II)/H 2 O 2 and solar/Fe(II)/S 2 O 8 2â^' at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chemical Engineering Journal, 2017, 310, 514-524.	12.7	67
32	Solar Photo-Fenton as Finishing Step for Biological Treatment of a Pharmaceutical Wastewater. Environmental Science & Technology, 2009, 43, 1185-1191.	10.0	66
33	Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents. Applied Catalysis B: Environmental, 2012, 111-112, 545-554.	20.2	66
34	Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration. Applied Catalysis B: Environmental, 2010, 97, 292-298.	20.2	65
35	Solar disinfection of contaminated water: a comparison of three small-scale reactors. Solar Energy, 2004, 77, 657-664.	6.1	59
36	Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water. Journal of Hazardous Materials, 2016, 320, 469-478.	12.4	58

#	Article	IF	CITATIONS
37	EDDS as complexing agent for enhancing solar advanced oxidation processes in natural water: Effect of iron species and different oxidants. Journal of Hazardous Materials, 2019, 372, 129-136.	12.4	58
38	Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catalysis Today, 2010, 151, 100-106.	4.4	57
39	Cost estimation of COD and color removal from landfill leachate using combined coffee-waste based activated carbon with advanced oxidation processes. Journal of Environmental Chemical Engineering, 2017, 5, 114-121.	6.7	56
40	Remediation of agro-food industry effluents by biotreatment combined with supported TiO2/H2O2 solar photocatalysis. Chemical Engineering Journal, 2015, 273, 205-213.	12.7	55
41	Solar disinfection of fungal spores in water aided by low concentrations of hydrogen peroxide. Photochemical and Photobiological Sciences, 2011, 10, 381-388.	2.9	54
42	Treatment of pulp mill wastewater by Cryptococcus podzolicus and solar photo-Fenton: A case study. Chemical Engineering Journal, 2014, 245, 158-165.	12.7	54
43	Dissolved oxygen concentration: A key parameter in monitoring the photo-Fenton process. Applied Catalysis B: Environmental, 2011, 104, 316-323.	20.2	53
44	A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses. Water Research, 2009, 43, 784-792.	11.3	51
45	Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant. Journal of Hazardous Materials, 2007, 146, 440-446.	12.4	50
46	Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes. Journal of Environmental Management, 2019, 232, 45-51.	7.8	50
47	Solar treatment of cork boiling and bleaching wastewaters in a pilot plant. Water Research, 2009, 43, 4050-4062.	11.3	49
48	Assessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater. Chemical Engineering Journal, 2014, 257, 122-130.	12.7	49
49	Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catalysis Today, 2017, 287, 10-14.	4.4	49
50	New trend on open solar photoreactors to treat micropollutants by photo-Fenton at circumneutral pH: Increasing optical pathway. Chemical Engineering Journal, 2020, 385, 123982.	12.7	49
51	Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant. Chemosphere, 2005, 58, 391-398.	8.2	48
52	Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. Journal of Hazardous Materials, 2019, 372, 85-93.	12.4	48
53	Cork boiling wastewater treatment at pilot plant scale: Comparison of solar photo-Fenton and ozone (O3, O3/H2O2). Toxicity and biodegradability assessment. Chemical Engineering Journal, 2013, 234, 232-239.	12.7	47
54	Removal of pharmaceuticals at microg Lâ~1 by combined nanofiltration and mild solar photo-Fenton. Chemical Engineering Journal, 2014, 239, 68-74.	12.7	47

#	Article	IF	CITATIONS
55	Degradation Pathways of the Commercial Reactive Azo Dye Procion Red H-E7B under Solar-Assisted Photo-Fenton Reaction. Environmental Science & Technology, 2008, 42, 6663-6670.	10.0	46
56	Advanced treatment of urban wastewater by UV-C/free chlorine process: Micro-pollutants removal and effect of UV-C radiation on trihalomethanes formation. Water Research, 2020, 169, 115220.	11.3	46
57	Resistance of <i>Fusarium sp</i> spores to solar TiO ₂ photocatalysis: influence of spore type and water (scalingâ€up results). Journal of Chemical Technology and Biotechnology, 2010, 85, 1038-1048.	3.2	45
58	Evaluating Microtox© as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO2 solar photo-assisted processes. Ecotoxicology and Environmental Safety, 2008, 69, 546-555.	6.0	43
59	Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products: The possibilities of cork boiling wastewater reuse. Chemical Engineering Journal, 2016, 304, 890-896.	12.7	43
60	Contaminants of emerging concern removal from real wastewater by UV/free chlorine process: A comparison with solar/free chlorine and UV/H2O2 at pilot scale. Chemosphere, 2019, 236, 124354.	8.2	43
61	A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions. Ecotoxicology and Environmental Safety, 2010, 73, 1189-1195.	6.0	42
62	Solar photo-Fenton optimization for the treatment of MWTP effluents containing emerging contaminants. Catalysis Today, 2013, 209, 188-194.	4.4	42
63	Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: An experimental design approach. Catalysis Today, 2015, 252, 61-69.	4.4	41
64	Combined photo-Fenton and biological oxidation for pesticide degradation: Effect of photo-treated intermediates on biodegradation kinetics. Chemosphere, 2008, 70, 1476-1483.	8.2	40
65	Is the combination of nanofiltration membranes and AOPs for removing microcontaminants cost effective in real municipal wastewater effluents?. Environmental Science: Water Research and Technology, 2016, 2, 511-520.	2.4	40
66	Solar transformation and photocatalytic treatment of cocaine in water: Kinetics, characterization of major intermediate products and toxicity evaluation. Applied Catalysis B: Environmental, 2011, 104, 37-48.	20.2	39
67	Benefits of photo-Fenton at low concentrations for solar disinfection of distilled water. A case study: Phytophthora capsici. Catalysis Today, 2013, 209, 181-187.	4.4	39
68	Detailed treatment line for a specific landfill leachate remediation. Brief economic assessment. Chemical Engineering Journal, 2015, 261, 60-66.	12.7	39
69	Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100458.	5.9	39
70	Simultaneous Determination of Oxygen Consumption Rate and Volumetric Oxygen Transfer Coefficient in Pneumatically Agitated Bioreactors. Industrial & Engineering Chemistry Research, 2006, 45, 1167-1171.	3.7	38
71	Pre-industrial-scale Combined Solar Photo-Fenton and Immobilized Biomass Activated-Sludge Biotreatment. Industrial & Engineering Chemistry Research, 2007, 46, 7467-7475.	3.7	38
72	Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale. Chemosphere, 2008, 72, 622-629.	8.2	38

#	Article	IF	CITATIONS
73	Solar photo-Fenton degradation of herbicides partially dissolved in water. Catalysis Today, 2011, 161, 214-220.	4.4	38
74	Determination of pesticides in sewage sludge from an agro-food industry using QuEChERS extraction followed by analysis with liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 6181-6193.	3.7	37
75	Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: A pilot plant study. Catalysis Today, 2019, 328, 216-222.	4.4	37
76	Hydrogen peroxide automatic dosing based on dissolved oxygen concentration during solar photo-Fenton. Catalysis Today, 2011, 161, 247-254.	4.4	34
77	Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts. Applied Catalysis B: Environmental, 2014, 144, 269-276.	20.2	34
78	Increased biodegradability of UltracidTM in aqueous solutions with solar TiO2 photocatalysis. Chemosphere, 2007, 68, 293-300.	8.2	33
79	The influence of location on solar photo-Fenton: Process performance, photoreactor scaling-up and treatment cost. Renewable Energy, 2020, 145, 1890-1900.	8.9	32
80	Direct oxidation of peroxymonosulfate under natural solar radiation: Accelerating the simultaneous removal of organic contaminants and pathogens from water. Chemosphere, 2021, 279, 130555.	8.2	32
81	Removal of microcontaminants from MWTP effluents by combination of membrane technologies and solar photo-Fenton at neutral pH. Catalysis Today, 2015, 252, 78-83.	4.4	30
82	Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: Role of pH and water matrix. Science of the Total Environment, 2020, 719, 137331.	8.0	30
83	Optimization of mild solar TiO2 photocatalysis as a tertiary treatment for municipal wastewater treatment plant effluents. Applied Catalysis B: Environmental, 2012, 128, 119-125.	20.2	29
84	Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results. Journal of Hazardous Materials, 2019, 372, 137-144.	12.4	29
85	Carbon-based cathodes degradation during electro-Fenton treatment at pilot scale: Changes in H2O2 electrogeneration. Chemosphere, 2021, 275, 129962.	8.2	29
86	Simultaneous removal of contaminants of emerging concern and pathogens from urban wastewater by homogeneous solar driven advanced oxidation processes. Science of the Total Environment, 2021, 766, 144320.	8.0	28
87	Synthetic fresh-cut wastewater disinfection and decontamination by ozonation at pilot scale. Water Research, 2020, 170, 115304.	11.3	27
88	Photolytic and photocatalytic transformation of methadone in aqueous solutions under solar irradiation: Kinetics, characterization of major intermediate products and toxicity evaluation. Water Research, 2011, 45, 4815-4826.	11.3	26
89	Photocatalytic treatment of dimethoate by solar photocatalysis at pilot plant scale. Environmental Chemistry Letters, 2005, 3, 118-121.	16.2	25
90	Assessment of a pilot solar V-trough reactor for solar water disinfection. Chemical Engineering Journal, 2020, 399, 125719.	12.7	25

#	Article	IF	CITATIONS
91	Sunlight advanced oxidation processes vs ozonation for wastewater disinfection and safe reclamation. Science of the Total Environment, 2021, 787, 147531.	8.0	25
92	Application of solar photo-Fenton at circumneutral pH to nanofiltration concentrates for removal of pharmaceuticals in MWTP effluents. Environmental Science and Pollution Research, 2015, 22, 846-855.	5.3	24
93	Natural chelating agents from olive mill wastewater to enable photo-Fenton-like reactions at natural pH. Catalysis Today, 2019, 328, 281-285.	4.4	24
94	Advanced evaluation of landfill leachate treatments by low and high-resolution mass spectrometry focusing on microcontaminant removal. Journal of Hazardous Materials, 2020, 384, 121372.	12.4	24
95	Contribution of temperature and photon absorption on solar photo-Fenton mediated by Fe3+-NTA for CEC removal in municipal wastewater. Applied Catalysis B: Environmental, 2021, 294, 120251.	20.2	24
96	UVC-based advanced oxidation processes for simultaneous removal of microcontaminants and pathogens from simulated municipal wastewater at pilot plant scale. Environmental Science: Water Research and Technology, 2020, 6, 2553-2566.	2.4	22
97	Detoxification of aqueous solutions of the pesticide "Sevnol―by solar photocatalysis. Environmental Chemistry Letters, 2006, 3, 169-172.	16.2	21
98	Nanofiltration retentate treatment from urban wastewater secondary effluent by solar electrochemical oxidation processes. Separation and Purification Technology, 2021, 254, 117614.	7.9	21
99	Solar photo-Fenton at circumneutral pH using Fe(III)-EDDS compared to ozonation for tertiary treatment of urban wastewater: Contaminants of emerging concern removal and toxicity assessment. Chemical Engineering Journal, 2022, 431, 133474.	12.7	21
100	Solar heterogeneous and homogeneous photocatalysis as a pre-treatment option for biotreatment. Research on Chemical Intermediates, 2007, 33, 407-420.	2.7	20
101	Commercial fertilizer as effective iron chelate (Fe3+-EDDHA) for wastewater disinfection under natural sunlight for reusing in irrigation. Applied Catalysis B: Environmental, 2019, 253, 286-292.	20.2	20
102	New approaches to solar Advanced Oxidation Processes for elimination of priority substances based on electrooxidation and ozonation at pilot plant scale. Catalysis Today, 2020, 355, 844-850.	4.4	20
103	Electro-oxidation process assisted by solar energy for the treatment of wastewater with high salinity. Science of the Total Environment, 2020, 705, 135831.	8.0	20
104	Electrochemically assisted photocatalysis for the simultaneous degradation of organic micro-contaminants and inactivation of microorganisms in water. Chemical Engineering Research and Design, 2021, 147, 488-496.	5.6	20
105	UV-C Peroxymonosulfate Activation for Wastewater Regeneration: Simultaneous Inactivation of Pathogens and Degradation of Contaminants of Emerging Concern. Molecules, 2021, 26, 4890.	3.8	20
106	Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies. Environmental Science and Pollution Research, 2017, 24, 6317-6328.	5.3	19
107	Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst. Chemosphere, 2012, 88, 1090-1096.	8.2	18
108	Fresh-cut wastewater reclamation: Techno-Economical assessment of solar driven processes at pilot plant scale. Applied Catalysis B: Environmental, 2020, 278, 119334.	20.2	18

#	Article	IF	CITATIONS
109	Aluminized surface to improve solar light absorption in open reactors: Application for micropollutants removal in effluents from municipal wastewater treatment plants. Science of the Total Environment, 2021, 755, 142624.	8.0	18
110	Recent advances in solar photochemical processes for water and wastewater disinfection. Chemical Engineering Journal Advances, 2022, 10, 100248.	5.2	18
111	Solar light assisted photodegradation of phenol with hydrogen peroxide over iron-doped titania catalysts: Role of iron leached/readsorbed species. Applied Catalysis B: Environmental, 2011, 108-109, 168-176.	20.2	17
112	Practical approach to the evaluation of industrial wastewater treatment by the application of advanced microbiological techniques. Ecotoxicology and Environmental Safety, 2018, 166, 123-131.	6.0	16
113	Advanced Oxidation Processes as sustainable technologies for the reduction of elderberry agro-industrial water impact. Water Resources and Industry, 2020, 24, 100137.	3.9	15
114	Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent. Journal of Hazardous Materials, 2009, 162, 1223-1227.	12.4	14
115	Effect of salinity on preconcentration of contaminants of emerging concern by nanofiltration: Application of solar photo-Fenton as a tertiary treatment. Science of the Total Environment, 2021, 756, 143593.	8.0	14
116	Fluorescence Spectroscopy and Chemometrics: A Simple and Easy Way for the Monitoring of Fluoroquinolone Mixture Degradation. ACS Omega, 2021, 6, 4663-4671.	3.5	14
117	Solar-driven free chlorine advanced oxidation process for simultaneous removal of microcontaminants and microorganisms in natural water at pilot-scale. Chemosphere, 2022, 288, 132493.	8.2	14
118	Microbiological evaluation of combined advanced chemical-biological oxidation technologies for the treatment of cork boiling wastewater. Science of the Total Environment, 2019, 687, 567-576.	8.0	13
119	Scale-up impact over solar photocatalytic ozonation with benchmark-P25 and N-TiO2 for insecticides abatement in water. Journal of Environmental Chemical Engineering, 2021, 9, 104915.	6.7	12
120	Solar photo-assisted electrochemical processes applied to actual industrial and urban wastewaters: A practical approach based on recent literature. Chemosphere, 2021, 279, 130560.	8.2	12
121	Monitoring and Removal of Organic Micro-contaminants by Combining Membrane Technologies with Advanced Oxidation Processes. Current Organic Chemistry, 2018, 22, 1103-1119.	1.6	12
122	Modeling persulfate activation by iron and heat for the removal of contaminants of emerging concern using carbamazepine as model pollutant. Chemical Engineering Journal, 2020, 389, 124445.	12.7	11
123	Pilot-scale removal of microcontaminants by solar-driven photo-Fenton in treated municipal effluents: Selection of operating variables based on lab-scale experiments. Journal of Environmental Chemical Engineering, 2021, 9, 104788.	6.7	11
124	Sulfate radical anion: Laser flash photolysis study and application in water disinfection and decontamination. Applied Catalysis B: Environmental, 2022, 315, 121519.	20.2	11
125	Overview on Pilot-Scale Treatments and New and Innovative Technologies for Hospital Effluent. Handbook of Environmental Chemistry, 2017, , 209-230.	0.4	10
126	Application of a multivariate analysis method for non-target screening detection of persistent transformation products during the cork boiling wastewater treatment. Science of the Total Environment, 2018, 633, 508-517.	8.0	9

#	Article	IF	CITATIONS
127	Enhanced solar photo-electro-Fenton by Theobroma grandiflorum addition during pharmaceuticals elimination in municipal wastewater: Action routes, process improvement, and biodegradability of the treated water. Journal of Environmental Chemical Engineering, 2022, 10, 107489.	6.7	9
128	Advanced oxidation process–biological system for wastewater containing a recalcitrant pollutant. Water Science and Technology, 2007, 55, 229-235.	2.5	8
129	Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks. International Journal of Energy Research, 2012, 36, 1314-1324.	4.5	7
130	Magnetic Photocatalyst for Wastewater Tertiary Treatment at Pilot Plant Scale: Disinfection and Enrofloxacin Abatement. Water (Switzerland), 2021, 13, 329.	2.7	7
131	Olive mill wastewater reuse to enable solar photo-Fenton-like processes for the elimination of priority substances in municipal wastewater treatment plant effluents. Environmental Science and Pollution Research, 2020, 27, 38148-38154.	5.3	6
132	A Rational Analysis on Key Parameters Ruling Zerovalent Iron-Based Treatment Trains: Towards the Separation of Reductive from Oxidative Phases. Nanomaterials, 2021, 11, 2948.	4.1	6
133	Removal of microcontaminants by zero-valent iron solar processes at natural pH: Water matrix and oxidant agents effect. Science of the Total Environment, 2022, 819, 153152.	8.0	6
134	Dynamic modelling for cork boiling wastewater treatment at pilot plant scale. Environmental Science and Pollution Research, 2014, 21, 12182-12189.	5.3	5
135	Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. Water Research, 2021, 203, 117532.	11.3	5
136	Advanced Technologies for Emerging Contaminants Removal in Urban Wastewater. Handbook of Environmental Chemistry, 2014, , 145-169.	0.4	4
137	Evaluation of commercial zerovalent iron sources in combination with solar energy to remove microcontaminants from natural water at circumneutral pH. Chemosphere, 2022, 286, 131557.	8.2	4
138	Natural solar activation of modified zinc oxides with rare earth elements (Ce, Yb) and Fe for the simultaneous disinfection and decontamination of urban wastewater. Chemosphere, 2022, 303, 135017.	8.2	4
139	Removal of Pesticides from Water and Wastewater by Solar-Driven Photocatalysis. Springer Briefs in Molecular Science, 2012, , 59-76.	0.1	3
140	Solar Photocatalytic Processes: Water Decontamination and Disinfection. , 2013, , 371-393.		3
141	Valorization of UWWTP effluents for ammonium recovery and MC elimination by advanced AOPs. Science of the Total Environment, 2022, 823, 153693.	8.0	3
142	Assessment of a Novel Photocatalytic TiO2-Zirconia Ultrafiltration Membrane and Combination with Solar Photo-Fenton Tertiary Treatment of Urban Wastewater. Catalysts, 2022, 12, 552.	3.5	3
143	Comparison of Photo-Fenton Treatment and Coupled Photo-Fenton and Biological Treatment for Detoxification of Pharmaceutical Industry Contaminants. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	2
144	Elimination of organic micro-contaminants in municipal wastewater by a combined immobilized biomass reactor and solar photo-Fenton tertiary treatment. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	2

#	Article	IF	CITATIONS
145	Removal and Degradation of Pharmaceutically Active Compounds (PhACs) in Wastewaters by Solar Advanced Oxidation Processes. Handbook of Environmental Chemistry, 2020, , 299-326.	0.4	2
146	CHAPTER 6. Process Integration. Concepts of Integration and Coupling of Photocatalysis with Other Processes. RSC Energy and Environment Series, 2016, , 157-173.	0.5	2
147	Solar Detoxification and Disinfection of Water. , 2021, , 1-28.		0
148	Solar Detoxification and Disinfection of Water. , 2022, , 453-480.		0