Jane J Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7129841/publications.pdf

Version: 2024-02-01

	101543	95266
5,236	36	68
citations	h-index	g-index
104	104	5209
docs citations	times ranked	citing authors
	citations 104	5,236 36 citations h-index 104 104

#	Article	IF	CITATIONS
1	Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. Ca-A Cancer Journal for Clinicians, 2020, 70, 321-346.	329.8	481
2	Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet, The, 2020, 395, 575-590.	13.7	421
3	Mortality impact of achieving WHO cervical cancer elimination targets: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet, The, 2020, 395, 591-603.	13.7	321
4	Health and Economic Implications of HPV Vaccination in the United States. New England Journal of Medicine, 2008, 359, 821-832.	27.0	317
5	Comprehensive Control of Human Papillomavirus Infections and Related Diseases. Vaccine, 2013, 31, H1-H31.	3.8	272
6	Cost effectiveness analysis of including boys in a human papillomavirus vaccination programme in the United States. BMJ: British Medical Journal, 2009, 339, b3884-b3884.	2.3	189
7	Targeted human papillomavirus vaccination of men who have sex with men in the USA: a cost-effectiveness modelling analysis. Lancet Infectious Diseases, The, 2010, 10, 845-852.	9.1	159
8	Extended Cost-Effectiveness Analysis for Health Policy Assessment: A Tutorial. Pharmacoeconomics, 2016, 34, 913-923.	3.3	136
9	Multiparameter Calibration of a Natural History Model of Cervical Cancer. American Journal of Epidemiology, 2007, 166, 137-150.	3.4	131
10	Secondary Prevention of Cervical Cancer: ASCO Resource-Stratified Clinical Practice Guideline. Journal of Global Oncology, 2017, 3, 635-657.	0.5	121
11	Screening for Cervical Cancer in Primary Care. JAMA - Journal of the American Medical Association, 2018, 320, 706.	7.4	112
12	Cost-effectiveness of Human Papillomavirus DNA Testing in the United Kingdom, The Netherlands, France, and Italy. Journal of the National Cancer Institute, 2005, 97, 888-895.	6.3	106
13	Modeling Cervical Cancer Prevention in Developed Countries. Vaccine, 2008, 26, K76-K86.	3.8	102
14	An Updated Natural History Model of Cervical Cancer: Derivation of Model Parameters. American Journal of Epidemiology, 2014, 180, 545-555.	3.4	87
15	Cost-Effectiveness of Human Papillomavirus Vaccination and Cervical Cancer Screening in Women Older Than 30 Years in the United States. Annals of Internal Medicine, 2009, 151, 538.	3.9	81
16	Provider Attitudes and Screening Practices Following Changes in Breast and Cervical Cancer Screening Guidelines. Journal of General Internal Medicine, 2016, 31, 52-59.	2.6	78
17	Unifying Screening Processes Within the PROSPR Consortium: A Conceptual Model for Breast, Cervical, and Colorectal Cancer Screening. Journal of the National Cancer Institute, 2015, 107, djv120-djv120.	6.3	76
18	Prevention of HPV-Related Cancers in Norway: Cost-Effectiveness of Expanding the HPV Vaccination Program to Include Pre-Adolescent Boys. PLoS ONE, 2014, 9, e89974.	2.5	74

#	Article	IF	Citations
19	Cervical screening: ESGO-EFC position paper of the European Society of Gynaecologic Oncology (ESGO) and the European Federation of Colposcopy (EFC). British Journal of Cancer, 2020, 123, 510-517.	6.4	74
20	Optimal Cervical Cancer Screening in Women Vaccinated Against Human Papillomavirus. Journal of the National Cancer Institute, 2017, 109, djw216.	6.3	72
21	Age of Acquiring Causal Human Papillomavirus (HPV) Infections: Leveraging Simulation Models to Explore the Natural History of HPV-induced Cervical Cancer. Clinical Infectious Diseases, 2017, 65, 893-899.	5.8	58
22	An extended cost-effectiveness analysis of publicly financed HPV vaccination to prevent cervical cancer in China. Vaccine, 2015, 33, 2830-2841.	3.8	54
23	Exploring the cost-effectiveness of HPV vaccination in Vietnam: Insights for evidence-based cervical cancer prevention policy. Vaccine, 2008, 26, 4015-4024.	3.8	53
24	The health and economic impact of scaling cervical cancer prevention in 50 lowâ€and lowerâ€middleâ€income countries. International Journal of Gynecology and Obstetrics, 2017, 138, 47-56.	2.3	50
25	Cervical cancer screening in lowâ€resource settings: A costâ€effectiveness framework for valuing tradeoffs between test performance and program coverage. International Journal of Cancer, 2015, 137, 2208-2219.	5.1	49
26	Meta-Analysis and Cost Comparison of Empirical versus Pre-Emptive Antifungal Strategies in Hematologic Malignancy Patients with High-Risk Febrile Neutropenia. PLoS ONE, 2015, 10, e0140930.	2.5	46
27	Follow-Up of Abnormal Breast and Colorectal Cancer Screening by Race/Ethnicity. American Journal of Preventive Medicine, 2016, 51, 507-512.	3.0	46
28	Adapting cervical cancer screening for women vaccinated against human papillomavirus infections: The value of stratifying guidelines. European Journal of Cancer, 2018, 91, 68-75.	2.8	45
29	The Role of Cost-Effectiveness in U.S. Vaccination Policy. New England Journal of Medicine, 2011, 365, 1760-1761.	27.0	42
30	When and how often to screen for cervical cancer in three low- and middle-income countries: A cost-effectiveness analysis. Papillomavirus Research (Amsterdam, Netherlands), 2015, 1, 38-58.	4.5	42
31	Bayesian Methods for Calibrating Health Policy Models: A Tutorial. Pharmacoeconomics, 2017, 35, 613-624.	3.3	42
32	Health and economic benefits of single-dose HPV vaccination in a Gavi-eligible country. Vaccine, 2018, 36, 4823-4829.	3.8	42
33	HPV-FRAME: A consensus statement and quality framework for modelled evaluations of HPV-related cancer control. Papillomavirus Research (Amsterdam, Netherlands), 2019, 8, 100184.	4.5	41
34	Comprehensive Control of Human Papillomavirus Infections and Related Diseases. Vaccine, 2013, 31, F1-F31.	3.8	40
35	The comparative and cost-effectiveness of HPV-based cervical cancer screening algorithms in El Salvador. International Journal of Cancer, 2015, 137, 893-902.	5.1	38
36	An overview of cervical cancer epidemiology and prevention in Scandinavia. Acta Obstetricia Et Gynecologica Scandinavica, 2018, 97, 795-807.	2.8	38

#	Article	IF	CITATIONS
37	Community-based HPV self-collection versus visual inspection with acetic acid in Uganda: a cost-effectiveness analysis of the ASPIRE trial. BMJ Open, 2018, 8, e020484.	1.9	38
38	Model-Based Impact and Cost-Effectiveness of Cervical Cancer Prevention in the Extended Middle East and North Africa (EMENA). Vaccine, 2013, 31, G65-G77.	3.8	37
39	Estimating the Natural History of Cervical Carcinogenesis Using Simulation Models: A CISNET Comparative Analysis. Journal of the National Cancer Institute, 2020, 112, 955-963.	6.3	37
40	Weighing the Benefits and Costs of HPV Vaccination of Young Men. New England Journal of Medicine, 2011, 364, 393-395.	27.0	36
41	Effect of Time to Diagnostic Testing for Breast, Cervical, and Colorectal Cancer Screening Abnormalities on Screening Efficacy: A Modeling Study. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 158-164.	2.5	36
42	Model-Based Impact and Cost-Effectiveness of Cervical Cancer Prevention in Sub-Saharan Africa. Vaccine, 2013, 31, F60-F72.	3.8	35
43	Variation in Screening Abnormality Rates and Follow-Up of Breast, Cervical and Colorectal Cancer Screening within the PROSPR Consortium. Journal of General Internal Medicine, 2016, 31, 372-379.	2.6	34
44	Impact of disruptions and recovery for established cervical screening programs across a range of high-income country program designs, using COVID-19 as an example: A modelled analysis. Preventive Medicine, 2021, 151, 106623.	3.4	34
45	Comprehensive Control of Human Papillomavirus Infections and Related Diseases. Vaccine, 2013, 31, G1-G31.	3.8	33
46	Cost-Effectiveness Analysis of Radiation Therapy Versus Transoral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma. International Journal of Radiation Oncology Biology Physics, 2017, 97, 709-717.	0.8	31
47	Cost-effectiveness of organized versus opportunistic cervical cytology screening in Hong Kong. Journal of Public Health, 2004, 26, 130-137.	1.8	30
48	Human papillomavirus vaccination for adults aged 30 to 45 years in the United States: A cost-effectiveness analysis. PLoS Medicine, 2021, 18, e1003534.	8.4	30
49	Recommendations for Cervical Cancer Prevention in Sub-Saharan Africa. Vaccine, 2013, 31, F73-F74.	3.8	29
50	Cost-effectiveness of HPV-based cervical cancer screening in the public health system in Nicaragua. BMJ Open, 2017, 7, e015048.	1.9	29
51	Too Late to Vaccinate? The Incremental Benefits and Cost-effectiveness of a Delayed Catch-up Program Using the 4-Valent Human Papillomavirus Vaccine in Norway. Journal of Infectious Diseases, 2015, 211, 206-215.	4.0	27
52	Packaging Health Services When Resources Are Limited: The Example of a Cervical Cancer Screening Visit. PLoS Medicine, 2006, 3, e434.	8.4	26
53	Estimating the value of point-of-care HPV testing in three low- and middle-income countries: a modeling study. BMC Cancer, 2017, 17, 791.	2.6	26
54	Costs and Cost-Effectiveness of 9-Valent Human Papillomavirus (HPV) Vaccination in Two East African Countries. PLoS ONE, 2014, 9, e106836.	2.5	25

#	Article	IF	CITATIONS
55	The Cost-Effectiveness of Cervical Self-Sampling to Improve Routine Cervical Cancer Screening: The Importance of Respondent Screening History and Compliance. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 95-103.	2.5	23
56	Evidenceâ€based policy choices for efficient and equitable cervical cancer screening programs in lowâ€resource settings. Cancer Medicine, 2017, 6, 2008-2014.	2.8	22
57	Quantifying the Value of Orally Delivered Biologic Therapies: AÂCost-Effectiveness Analysis of Oral Semaglutide. Journal of Pharmaceutical Sciences, 2019, 108, 3138-3145.	3.3	21
58	Cost-Effectiveness Analysis of Treatment Strategies for Stage I and II Endometrial Cancer. Journal of Obstetrics and Gynaecology Canada, 2007, 29, 131-139.	0.7	20
59	Using lessons from breast, cervical, and colorectal cancer screening to inform the development of lung cancer screening programs. Cancer, 2016, 122, 1338-1342.	4.1	20
60	To expand coverage, or increase frequency: Quantifying the tradeoffs between equity and efficiency facing cervical cancer screening programs in low-resource settings. International Journal of Cancer, 2017, 140, 1293-1305.	5.1	20
61	The costâ€effectiveness of implementing HPV testing for cervical cancer screening in El Salvador. International Journal of Gynecology and Obstetrics, 2019, 145, 40-46.	2.3	20
62	Cervical cancer screening research in the PROSPR I consortium: Rationale, methods and baseline findings from a US cohort. International Journal of Cancer, 2019, 144, 1460-1473.	5.1	20
63	A proposed new generation of evidence-based microsimulation models to inform global control of cervical cancer. Preventive Medicine, 2021, 144, 106438.	3.4	20
64	Cost-Effectiveness of Cervical Cancer Screening in Women Living With HIV in South Africa: A Mathematical Modeling Study. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 79, 195-205.	2.1	19
65	Cost-Effectiveness of Cervical Cancer Prevention in Central and Eastern Europe and Central Asia. Vaccine, 2013, 31, H71-H79.	3.8	18
66	Cost-effective management of women with minor cervical lesions: Revisiting the application of HPV DNA testing. Gynecologic Oncology, 2016, 143, 326-333.	1.4	18
67	Costs and cost-effectiveness of a mental health intervention for war-affected young persons: decision analysis based on a randomized controlled trial. Health Policy and Planning, 2016, 31, 415-424.	2.7	18
68	Choosing the optimal <scp>HPV</scp> vaccine: The health impact and economic value of the nonavalent and bivalent <scp>HPV</scp> vaccines in 48 Gaviâ€eligible countries. International Journal of Cancer, 2021, 148, 932-940.	5.1	18
69	Impact and cost-effectiveness of strategies to accelerate cervical cancer elimination: A model-based analysis. Preventive Medicine, 2021, 144, 106276.	3.4	18
70	Cervical cancer prevention in El Salvador (CAPE)â€"An HPV testing-based demonstration project: Changing the secondary prevention paradigm in a lower middle-income country. Gynecologic Oncology Reports, 2017, 20, 58-61.	0.6	17
71	Legislation to Increase Uptake of HPV Vaccination and Adolescent Sexual Behaviors. Pediatrics, 2018, 142, .	2.1	16
72	Historical and projected hysterectomy rates in the USA: Implications for future observed cervical cancer rates and evaluating prevention interventions. Gynecologic Oncology, 2020, 158, 710-718.	1.4	16

#	Article	IF	Citations
73	Cost-effectiveness of an HPV self-collection campaign in Uganda: comparing models for delivery of cervical cancer screening in a low-income setting. Health Policy and Planning, 2017, 32, 956-968.	2.7	15
74	Rationale and design of a double-blind randomized non-inferiority clinical trial to evaluate one or two doses of vaccine against human papillomavirus including an epidemiologic survey to estimate vaccine efficacy: The Costa Rica ESCUDDO trial. Vaccine, 2022, 40, 76-88.	3.8	15
75	Choosing wisely: a model-based analysis evaluating the trade-offs in cancer benefit and diagnostic referrals among alternative HPV testing strategies in Norway. British Journal of Cancer, 2017, 117, 783-790.	6.4	14
76	The Cost-Effectiveness of Visual Triage of Human Papillomavirus–Positive Women in Three Low- and Middle-Income Countries. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1500-1510.	2.5	13
77	Health impact of delayed implementation of cervical cancer screening programs in India: A modeling analysis. International Journal of Cancer, 2019, 144, 687-696.	5.1	11
78	Given a choice between self-sampling at home for HPV testing and standard of care screening at the clinic, what do African American women choose? Findings from a group randomized controlled trial. Preventive Medicine, 2021, 142, 106358.	3.4	11
79	The cost-effectiveness of human papillomavirus self-collection among cervical cancer screening non-attenders in El Salvador. Preventive Medicine, 2020, 131, 105931.	3.4	9
80	Improving outcomes for caregivers through treatment of young people affected by war: a randomized controlled trial in Sierra Leone. Bulletin of the World Health Organization, 2015, 93, 834-841.	3.3	9
81	Cost-effectiveness analysis of the 2019 American Society for Colposcopy and Cervical Pathology Risk-Based Management Consensus Guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. American Journal of Obstetrics and Gynecology, 2022, 226, 228.e1-228.e9.	1.3	8
82	Cost-Effectiveness of Offering Cervical Cancer Screening with HPV Self-Sampling among African-American Women in the Mississippi Delta. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1114-1121.	2.5	7
83	Mathematical Model of HPV Provides Insight into Impacts of Risk Factors and Vaccine. PLoS Medicine, 2006, 3, e164.	8.4	7
84	Switching clinicâ€based cervical cancer screening programs to HPV selfâ€sampling: A costâ€effectiveness analysis of vaccinated and unvaccinated Norwegian women. International Journal of Cancer, 2022, 150, 491-501.	5.1	7
85	Impact and Cost-Effectiveness of Human Papillomavirus Vaccination Campaigns. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 22-30.	2.5	5
86	Health gains and financial protection from human papillomavirus vaccination in Ethiopia: findings from a modelling study. Health Policy and Planning, 2021, 36, 891-899.	2.7	5
87	Different human papillomavirus types share early natural history transitions in immunocompetent women. International Journal of Cancer, 2022, 151, 920-929.	5.1	5
88	Opportunities to Improve Cervical Cancer Screening in the United States. Milbank Quarterly, 2012, 90, 38-41.	4.4	4
89	Health and Economic Impact of Intensive Surveillance for Distant Recurrence After Curative Treatment of Colon Cancer: A Mathematical Modeling Study. Diseases of the Colon and Rectum, 2019, 62, 872-881.	1.3	4
90	Now or later: Health impacts of delaying singleâ€dose <scp>HPV</scp> vaccine implementation in a highâ€burden setting. International Journal of Cancer, 2022, 151, 1804-1809.	5.1	4

#	Article	IF	Citations
91	Policy Implications of Adjusting Randomized Trial Data for Economic Evaluations. Medical Decision Making, 2012, 32, 400-427.	2.4	3
92	Practice-Based Evidence for Primary HPV Testing in the United States. Journal of the National Cancer Institute, 2014, 106, dju213-dju213.	6.3	3
93	Trends of two HPV-associated cancers in Massachusetts: cervical and oropharyngeal cancer. Cancer Causes and Control, 2018, 29, 435-443.	1.8	3
94	Cost-utility analysis of heart surgeries for young adults with severe rheumatic mitral valve disease in India. International Journal of Cardiology, 2021, 338, 50-57.	1.7	3
95	Identifying a Single Optimal Integrated Cervical Cancer Prevention Policy in Norway: A Cost-Effectiveness Analysis. Medical Decision Making, 2022, 42, 795-807.	2.4	3
96	Extended Middle East and North Africa: Summary Recommendations for the Prevention of Human Papillomavirus Infections and Related Cancers Including Cervical Cancer. Vaccine, 2013, 31, G78-G79.	3.8	2
97	Development and Calibration of a Mathematical Model of Anal Carcinogenesis for High-Risk HIV-Infected Men. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 79, 10-19.	2.1	2
98	Potential effectiveness of a therapeutic <scp>HPV</scp> intervention campaign in Uganda. International Journal of Cancer, 2022, 150, 847-855.	5.1	2
99	Letter to the Editor Regarding "Evaluation of a Cervicography-Based Program to Ensure Quality of Visual Inspection of the Cervix in HIV-Infected Women in Johannesburg, South Africaâ€-by Firnhaber et al. Journal of Lower Genital Tract Disease, 2015, 19, e45-e46.	1.9	1
100	Cost-effectiveness of nonavalent HPV vaccine in Norway considering current empirical data and validation. Preventive Medicine, 2021, 150, 106688.	3.4	1
101	Cost-effectiveness analysis of proton versus photon therapy with respect to risk of growth hormone deficiency Journal of Clinical Oncology, 2013, 31, e17553-e17553.	1.6	0
102	Determining optimal first-line chemotherapy for good and intermediate prognosis testicular germ cell tumors using decision analysis Journal of Clinical Oncology, 2014, 32, 209-209.	1.6	0
103	Impact of Delaying Effective and Cost-Effective Policy Decisions: An Example From Cervical Cancer Prevention in Norway. MDM Policy and Practice, 2022, 7, 238146832110710.	0.9	O