

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7129298/publications.pdf Version: 2024-02-01

FENCL

#	Article	IF	CITATIONS
1	Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011, 5, 5463-5471.	7.3	1,904
2	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nature Nanotechnology, 2017, 12, 441-446.	15.6	1,271
3	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
4	Two-dimensional polyaniline (C ₃ N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7414-7419.	3.3	380
5	2D Frameworks of C ₂ N and C ₃ N as New Anode Materials for Lithium″on Batteries. Advanced Materials, 2017, 29, 1702007.	11.1	282
6	Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nature Communications, 2020, 11, 2209.	5.8	281
7	Visible Light Photocatalyst:Â Iodine-Doped Mesoporous Titania with a Bicrystalline Framework. Journal of Physical Chemistry B, 2006, 110, 20823-20828.	1.2	236
8	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
9	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
10	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	5.8	131
11	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy, 2018, 44, 304-310.	8.2	118
12	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	11.1	104
13	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
14	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	15.6	102
15	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. Small, 2017, 13, 1701167.	5.2	82
16	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	7.8	80
17	Visible light responsive Bi ₇ Fe ₃ Ti ₃ O ₂₁ nanoshelf photocatalysts with ferroelectricity and ferromagnetism. Journal of Materials Chemistry A, 2014, 2, 13366.	5.2	79
18	Three Birds, One‣tone Strategy for Hybrid Microwave Synthesis of Ta and Sn Codoped Fe ₂ O ₃ @FeTaO ₄ Nanorods for Photoâ€Electrochemical Water Oxidation. Advanced Functional Materials, 2019, 29, 1805737.	7.8	79

Feng Li

#	Article	IF	CITATIONS
19	Identifying the structure of Zn-N2 active sites and structural activation. Nature Communications, 2019, 10, 2623.	5.8	79
20	Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions. Journal of Materials Chemistry A, 2018, 6, 10433-10440.	5.2	72
21	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
22	Revealing Isolated Mâ^'N ₃ C ₁ Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 23678-23683.	7.2	64
23	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58
24	Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity. Thin Solid Films, 2012, 520, 3515-3522.	0.8	52
25	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420.	7.2	40
26	Enhanced visible photocatalytic activity of hybrid Pt/Î \pm -Fe2O3 nanorods. RSC Advances, 2012, 2, 10057.	1.7	37
27	3D Macroporous Mo <i>_x</i> C@Nâ€C with Incorporated Mo Vacancies as Anodes for Highâ€Performance Lithiumâ€ion Batteries. Small Methods, 2018, 2, 1800040.	4.6	36
28	Molecular ordering and phase segregation induced by a volatile solid additive for highly efficient all-small-molecule organic solar cells. Journal of Materials Chemistry A, 2021, 9, 2857-2863.	5.2	36
29	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. Nano Energy, 2019, 56, 581-587.	8.2	35
30	Nanosheet array assembled by TiO ₂ nanocrystallites with {116} facets parallel to the nanosheet surface. Journal of Materials Chemistry A, 2013, 1, 225-228.	5.2	32
31	Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability. Scientific Reports, 2015, 5, 15511.	1.6	28
32	Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano, 2021, 15, 11891-11897.	7.3	27
33	Lowâ€Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. Advanced Materials, 2019, 31, e1807267.	11.1	22
34	Facile route to prepare grain-oriented multiferroic Bi7Fe3â^'Co Ti3O21 ceramics. Journal of the European Ceramic Society, 2015, 35, 3437-3443.	2.8	19
35	Unveiling the critical role of active site interaction in single atom catalyst towards hydrogen evolution catalysis. Nano Energy, 2022, 93, 106819.	8.2	19
36	Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. Nano Energy, 2019, 66, 104112.	8.2	13

Feng Li

#	Article	IF	CITATIONS
37	Monodispersed platinum nanoparticles embedded in Ni3S2-containing hollow carbon spheres with ultralow Pt loading and high alkaline hydrogen evolution activity. Electrochimica Acta, 2019, 318, 590-596.	2.6	12
38	Active Site Engineering in Transition Metal Based Electrocatalysts for Green Energy Applications. Accounts of Materials Research, 2021, 2, 147-158.	5.9	11
39	Synthesis and Catalytic Property of Ribonucleosideâ€Derived Carbon Dots. Small, 2022, 18, e2106269.	5.2	11
40	Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 20113-20121.	4.0	10
41	Molecular-level proton acceptor boosts oxygen evolution catalysis to enable efficient industrial-scale water splitting. Green Energy and Environment, 2024, 9, 344-355.	4.7	10
42	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	4.7	9
43	{116} faceted anatase single-crystalline nanosheet arrays: facile synthesis and enhanced electrochemical performances. Nanoscale, 2014, 6, 12434-12439.	2.8	8
44	Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure–Performance Relationship Discovery. Accounts of Chemical Research, 2022, 55, 110-120.	7.6	7
45	Atomic tailoring of platinum catalysts. Nature Catalysis, 2019, 2, 477-478.	16.1	6
46	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
47	Ethanol assisted synthesis of anatase nanobelts with improved crystallinity and photocatalytic activity. Applied Surface Science, 2013, 283, 175-180.	3.1	4
48	Tailoring of {116} faceted single crystalline anatase nanosheet arrays and their improved electrochemical performance. CrystEngComm, 2015, 17, 4377-4382.	1.3	3
49	Pt/TiO2 Nanosheets Array Dominated by {001} Facets with Enhanced Photocatalytic Activity. Chinese Journal of Chemical Physics, 2014, 27, 530-534.	0.6	1
50	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie, 2022, 134, .	1.6	1