Daniel J Frankel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7129054/publications.pdf

Version: 2024-02-01

840776 580821 27 682 11 25 citations h-index g-index papers 28 28 28 1062 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The naked truth: a comprehensive clarification and classification of current †myths†in naked mole†at biology. Biological Reviews, 2022, 97, 115-140.	10.4	62
2	The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture. Journal of Biological Chemistry, 2020, 295, 6689-6699.	3.4	8
3	Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damage in vitro. Aging, 2020, 12, 22266-22290.	3.1	15
4	The material properties of naked mole-rat hyaluronan. Scientific Reports, 2019, 9, 6632.	3.3	19
5	Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating. Carbohydrate Polymers, 2016, 152, 129-139.	10.2	81
6	Hyaluronan in cancer – from the naked mole rat to nanoparticle therapy. Soft Matter, 2016, 12, 3841-3848.	2.7	30
7	Role of the Three-Phase Boundary of the Platinum–Support Interface in Catalysis: A Model Catalyst Kinetic Study. ACS Catalysis, 2016, 6, 5865-5872.	11.2	14
8	In vitro assembly of a viral envelope. Soft Matter, 2015, 11, 7722-7727.	2.7	5
9	Lipid directed assembly of the HIV capsid protein. Soft Matter, 2014, 10, 9562-9567.	2.7	5
10	Probing interactions of the HIV protein GP120 with lipids and CD4 receptors. Soft Matter, 2013, 9, 2803.	2.7	5
11	Self assembly and pore formation of HIV GP160 revealed at molecular resolution. Soft Matter, 2013, 9, 283-290.	2.7	2
12	Creating a bio-hybrid signal transduction pathway: opening a new channel of communication between cells and machines. Bioinspiration and Biomimetics, 2012, 7, 046017.	2.9	3
13	Characterising single fibronectin–integrin complexes. Soft Matter, 2012, 8, 6151.	2.7	8
14	Complete unfolding of fibronectin reveals surface interactions. Soft Matter, 2012, 8, 9933.	2.7	11
15	Protein directed assembly of lipids. Chemical Communications, 2012, 48, 672-674.	4.1	3
16	Revealing the selective interactions of fibronectin with lipid bilayers. Soft Matter, 2011, 7, 10666.	2.7	10
17	Collagen Scaffolds and Their Application to Cardiology–the Importance of Matrix Interactions. , 2011, , 99-120.		O
18	Nanoscale viscoelastic properties of an aligned collagen scaffold. Journal of Materials Science: Materials in Medicine, 2009, 20, 257-263.	3.6	30

#	Article	IF	CITATIONS
19	Macroscopic 2D Networks Self-Assembled from Nanometer-Sized Protein/DNA Complexes. Nano Letters, 2006, 6, 365-370.	9.1	7
20	Formation of hydrogen-bridged cytosine dimers on Cu(110). Journal of Chemical Physics, 2006, 124, 204704.	3.0	16
21	Adsorption of α-pyridone on Cu(110). Journal of Chemical Physics, 2002, 116, 8988-8993.	3.0	O
22	Dehydrogenation induced phase transitions of p-aminobenzoic acid on Cu(110). Journal of Chemical Physics, 2002, 116, 460-470.	3.0	7
23	Self-Assembly of Adenine on Cu(110) Surfaces. Langmuir, 2002, 18, 3219-3225.	3.5	152
24	Chemisorption induced chirality: glycine on Cu. Surface Science, 2002, 497, 37-46.	1.9	131
25	Organic Adsorbate Induced Surface Reconstruction:Âp-Aminobenzoic Acid on Cu{110}. Langmuir, 2001, 17, 8276-8280.	3.5	31
26	Linear dichroism electron scattering from chiral surfaces. Chemical Physics Letters, 2001, 349, 167-171.	2.6	7
27	The formation of enantiospecific phases on a $Cu\{110\}$ surface. PhysChemComm, 1999, 2, 41.	0.8	20