## Sara Mayer Branco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7128864/publications.pdf Version: 2024-02-01



SADA MAYER REANCO

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fungal Community Shift Along Steep Environmental Gradients from Geothermal Soils in Yellowstone<br>National Park. Microbial Ecology, 2022, 84, 33-43.                                                                  | 1.4 | 3         |
| 2  | Giant mobile elements: Agents of multivariate phenotypic evolution in fungi. Current Biology, 2022, 32, R234-R236.                                                                                                     | 1.8 | 0         |
| 3  | Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi.<br>New Phytologist, 2022, 235, 2158-2175.                                                                          | 3.5 | 34        |
| 4  | Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi.<br>New Phytologist, 2021, 230, 774-792.                                                                                | 3.5 | 37        |
| 5  | Disentangling the role of ectomycorrhizal fungi in plant nutrient acquisition along a Zn gradient using X-ray imaging. Science of the Total Environment, 2021, 801, 149481.                                            | 3.9 | 4         |
| 6  | Fungal heavy metal adaptation through single nucleotide polymorphisms and copyâ€number variation.<br>Molecular Ecology, 2020, 29, 4157-4169.                                                                           | 2.0 | 24        |
| 7  | Gene Copy Number Variation Does Not Reflect Structure or Environmental Selection in Two Recently<br>Diverged California Populations of <i>Suillus brevipes</i> . G3: Genes, Genomes, Genetics, 2020, 10,<br>4591-4597. | 0.8 | 2         |
| 8  | Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathogens, 2019, 15, e1007831.                                                                                                                    | 2.1 | 46        |
| 9  | Fungal diversity from communities to genes. Fungal Biology Reviews, 2019, 33, 225-237.                                                                                                                                 | 1.9 | 23        |
| 10 | Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Research, 2019, 29, 944-953.                                                                         | 2.4 | 21        |
| 11 | Genomeâ€based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Molecular Ecology, 2019, 28, 721-730.                                                               | 2.0 | 163       |
| 12 | The power of discussion: Support for women at the fungal Gordon Research Conference. Fungal<br>Genetics and Biology, 2018, 121, 65-67.                                                                                 | 0.9 | 2         |
| 13 | Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity,<br>underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia,<br>2017, 109, 115-127.       | 0.8 | 31        |
| 14 | Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiology<br>Spectrum, 2017, 5, .                                                                                                 | 1.2 | 33        |
| 15 | Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7067-7072.                  | 3.3 | 92        |
| 16 | Continentalâ€level population differentiation and environmental adaptation in the mushroom<br><i><scp>S</scp>uillus brevipes</i> . Molecular Ecology, 2017, 26, 2063-2076.                                             | 2.0 | 55        |
| 17 | Scaleâ€dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist, 2016, 209, 845-854.                    | 3.5 | 82        |
| 18 | FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2016, 20, 241-248.                                                                                        | 0.7 | 2,797     |

SARA MAYER BRANCO

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular<br>Ecology, 2015, 24, 2747-2758.                                                                                                                          | 2.0 | 100       |
| 20 | Clonal reproduction in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8901-8908.                                                                                                                   | 3.3 | 104       |
| 21 | Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Molecular Ecology, 2014, 23, 753-773.                                                                                                          | 2.0 | 203       |
| 22 | Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6341-6346.                                                                   | 3.3 | 482       |
| 23 | Improved software detection and extraction of ITS1 and <scp>ITS</scp> 2 from ribosomal<br><scp>ITS</scp> sequences of fungi and other eukaryotes for analysis of environmental sequencing<br>data. Methods in Ecology and Evolution, 2013, 4, 914-919. | 2.2 | 868       |
| 24 | Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biology and Biochemistry, 2013, 57, 282-291.                                                                                              | 4.2 | 203       |
| 25 | Fungi at a Small Scale: Spatial Zonation of Fungal Assemblages around Single Trees. PLoS ONE, 2013, 8, e78295.                                                                                                                                         | 1.1 | 40        |
| 26 | A note on the incidence of reverse complementary fungal ITS sequences in the public sequence databases and a software tool for their detection and reorientation. Mycoscience, 2011, 52, 278-282.                                                      | 0.3 | 7         |
| 27 | Serpentine soils promote ectomycorrhizal fungal diversity. Molecular Ecology, 2010, 19, 5566-5576.                                                                                                                                                     | 2.0 | 30        |
| 28 | Serpentine Soils Do Not Limit Mycorrhizal Fungal Diversity. PLoS ONE, 2010, 5, e11757.                                                                                                                                                                 | 1.1 | 40        |
| 29 | Are Oaks Locally Adapted to Serpentine Soils?. Northeastern Naturalist, 2009, 16, 329-340.                                                                                                                                                             | 0.1 | 12        |
| 30 | Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.                                                                                                                                                      |     | 3         |