
Pippa J Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7128057/publications.pdf Version: 2024-02-01

PIDDA I MOORE

#	Article	IF	CITATIONS
1	Consistency and Variation in the Kelp Microbiota: Patterns of Bacterial Community Structure Across Spatial Scales. Microbial Ecology, 2023, 85, 1265-1275.	2.8	8
2	Examining the production, export, and immediate fate of kelp detritus on openâ€coast subtidal reefs in the Northeast Atlantic. Limnology and Oceanography, 2022, 67, .	3.1	21
3	Examining the influence of regionalâ€scale variability in temperature and light availability on the depth distribution of subtidal kelp forests. Limnology and Oceanography, 2022, 67, 314-328.	3.1	11
4	Different kelp species support unique macroinvertebrate assemblages, suggesting the potential communityâ€wide impacts of kelp harvesting along the Humboldt Current System. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 14-27.	2.0	10
5	Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography, 2022, 31, 1422-1439.	5.8	75
6	Climateâ€driven substitution of foundation species causes breakdown of a facilitation cascade with potential implications for higher trophic levels. Journal of Ecology, 2022, 110, 2132-2144.	4.0	11
7	Replicating natural topography on marine artificial structures – A novel approach to eco-engineering. Ecological Engineering, 2021, 160, 106144.	3.6	36
8	The intensity of kelp harvesting shapes the population structure of the foundation species Lessonia trabeculata along the Chilean coastline. Marine Biology, 2021, 168, 1.	1.5	16
9	Artificial shorelines lack natural structural complexity across scales. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210329.	2.6	16
10	Fucus vesiculosus populations on artificial structures have potentially reduced fecundity and are dislodged at greater rates than on natural shores. Marine Environmental Research, 2021, 168, 105324.	2.5	4
11	Niche and neutral assembly mechanisms contribute to latitudinal diversity gradients in reef fishes. Journal of Biogeography, 2021, 48, 2683-2698.	3.0	11
12	The global problem of nuisance macroalgal blooms and pathways to its use in the circular economy. Algal Research, 2021, 58, 102407.	4.6	29
13	Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science, 2021, 374, eabj3593.	12.6	115
14	Design catalogue for eco-engineering of coastal artificial structures: a multifunctional approach for stakeholders and end-users. Urban Ecosystems, 2020, 23, 431-443.	2.4	75
15	Summer and Winter Marine Heatwaves Favor an Invasive Over Native Seaweeds. Journal of Phycology, 2020, 56, 1591-1600.	2.3	29
16	Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic. Scientific Reports, 2020, 10, 12161.	3.3	55
17	Patterns and drivers of understory macroalgal assemblage structure within subtidal kelp forests. Biodiversity and Conservation, 2020, 29, 4173-4192.	2.6	15
18	Ecological performance differs between range centre and trailing edge populations of a cold-water kelp: implications for estimating net primary productivity. Marine Biology, 2020, 167, 1.	1.5	9

PIPPA J MOORE

#	Article	IF	CITATIONS
19	Multipleâ€scale interactions structure macroinvertebrate assemblages associated with kelp understory algae. Diversity and Distributions, 2020, 26, 1551-1565.	4.1	21
20	Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 2020, 10, 19359.	3.3	155
21	Hierarchical genetic structuring in the cool boreal kelp, Laminaria digitata: implications for conservation and management. ICES Journal of Marine Science, 2020, 77, 1906-1913.	2.5	4
22	The Intertidal Zone of the North-East Atlantic Region. , 2019, , 7-46.		18
23	A global assessment of marine heatwaves and their drivers. Nature Communications, 2019, 10, 2624.	12.8	337
24	Evidence for different thermal ecotypes in range centre and trailing edge kelp populations. Journal of Experimental Marine Biology and Ecology, 2019, 514-515, 10-17.	1.5	48
25	Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 2019, 9, 306-312.	18.8	883
26	Resistance, Extinction, and Everything in Between – The Diverse Responses of Seaweeds to Marine Heatwaves. Frontiers in Marine Science, 2019, 6, .	2.5	98
27	Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 2019, 6, .	2.5	300
28	From ocean sprawl to blue-green infrastructure – A UK perspective on an issue of global significance. Environmental Science and Policy, 2019, 91, 60-69.	4.9	59
29	Appreciating interconnectivity between habitats is key to blue carbon management. Frontiers in Ecology and the Environment, 2018, 16, 71-73.	4.0	55
30	Longer and more frequent marine heatwaves over the past century. Nature Communications, 2018, 9, 1324.	12.8	1,081
31	Climate Velocity Can Inform Conservation in a Warming World. Trends in Ecology and Evolution, 2018, 33, 441-457.	8.7	124
32	Reefcrete: Reducing the environmental footprint of concretes for eco-engineering marine structures. Ecological Engineering, 2018, 120, 668-678.	3.6	40
33	The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography, 2018, 41, 1469-1484.	4.5	90
34	Cumulative stress restricts niche filling potential of habitatâ€forming kelps in a future climate. Functional Ecology, 2018, 32, 288-299.	3.6	21
35	Spatial variability in the diversity and structure of faunal assemblages associated with kelp holdfasts (Laminaria hyperborea) in the northeast Atlantic. PLoS ONE, 2018, 13, e0200411.	2.5	30
36	Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers. Remote Sensing, 2018, 10, 925.	4.0	36

PIPPA J MOORE

#	Article	IF	CITATIONS
37	Categorizing and Naming Marine Heatwaves. Oceanography, 2018, 31, .	1.0	368
38	Carbon assimilation and transfer through kelp forests in the <scp>NE</scp> Atlantic is diminished under a warmer ocean climate. Global Change Biology, 2018, 24, 4386-4398.	9.5	96
39	The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 2017, 492, 81-98.	1.5	361
40	Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. Marine Pollution Bulletin, 2017, 124, 573-586.	5.0	29
41	Stakeholder priorities for multi-functional coastal defence developments and steps to effective implementation. Marine Policy, 2017, 75, 143-155.	3.2	67
42	Variability in kelp forest structure along a latitudinal gradient in ocean temperature. Journal of Experimental Marine Biology and Ecology, 2017, 486, 255-264.	1.5	46
43	Ocean warming and acidification prevent compensatory response in a predator to reduced prey quality. Marine Ecology - Progress Series, 2017, 563, 111-122.	1.9	24
44	FROM THE TORREY CANYON TO TODAY: A 50 YEAR RETROSPECTIVE OF RECOVERY FROM THE OIL SPILL AND INTERACTION WITH CLIMATE-DRIVEN FLUCTUATIONS ON CORNISH ROCKY SHORES. International Oil Spill Conference Proceedings, 2017, 2017, 74-103.	0.1	6
45	Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3,	2.5	624
46	Individual and population-level responses to ocean acidification. Scientific Reports, 2016, 6, 20194.	3.3	31
47	A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 2016, 141, 227-238.	3.2	1,081
48	Facing the future: the importance of substratum features for ecological engineering of artificial habitats in the rocky intertidal. Marine and Freshwater Research, 2016, 67, 131.	1.3	57
49	Drill-cored rock pools: an effective method of ecological enhancement on artificial structures. Marine and Freshwater Research, 2016, 67, 123.	1.3	108
50	Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 2016, 6, 83-88.	18.8	405
51	Ocean Sprawl: Challenges and Opportunities for Biodiversity Management In A Changing World. Oceanography and Marine Biology, 2016, , 193-270.	1.0	39
52	Linking environmental variables with regional- scale variability in ecological structure and standing stock of carbon within UK kelp forests. Marine Ecology - Progress Series, 2016, 542, 79-95.	1.9	71
53	Strengthening confidence in climate change impact science. Global Ecology and Biogeography, 2015, 24, 64-76.	5.8	45
54	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	27.8	436

PIPPA J MOORE

#	Article	IF	CITATIONS
55	Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coastal Engineering, 2014, 87, 122-135.	4.0	247
56	Global imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-925.	18.8	1,602
57	Data rescue and re-use: Recycling old information to address new policy concerns. Marine Policy, 2013, 42, 91-98.	3.2	48
58	Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast <scp>A</scp> tlantic perspective. Ecology and Evolution, 2013, 3, 4016-4038.	1.9	374
59	Metaâ€nalysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution, 2013, 3, 1016-1030.	1.9	386
60	Metaâ€enalysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution, 2013, 3, 2782-2782.	1.9	7
61	Climate change and marine life. Biology Letters, 2012, 8, 907-909.	2.3	60
62	Invasive Species Unchecked by Climate—Response. Science, 2012, 335, 538-539.	12.6	3
63	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	12.6	1,062
64	Phenological changes in intertidal conâ€specific gastropods in response to climate warming. Global Change Biology, 2011, 17, 709-719.	9.5	61
65	Quantitative approaches in climate change ecology. Global Change Biology, 2011, 17, 3697-3713.	9.5	121
66	Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 2011, 400, 7-16.	1.5	350
67	Predicting impacts of climateâ€induced range expansion: an experimental framework and a test involving key grazers on temperate rocky shores. Global Change Biology, 2009, 15, 1413-1422.	9.5	43
68	Spatial scales of variance in abundance of intertidal species: effects of region, dispersal mode, and trophic level. Ecology, 2009, 90, 1242-1254.	3.2	37
69	Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shoresÂ. Marine Ecology - Progress Series, 2009, 396, 245-259.	1.9	221
70	Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Climate Research, 2008, 37, 123-133.	1.1	220
71	COMPARATIVE ECOLOGY OF NORTH ATLANTIC SHORES: DO DIFFERENCES IN PLAYERS MATTER FOR PROCESS?. Ecology, 2008, 89, S3-23.	3.2	76
72	Effects of grazer identity on the probability of escapes by a canopy-forming macroalga. Journal of Experimental Marine Biology and Ecology, 2007, 344, 170-180.	1.5	52

#	Article	IF	CITATIONS
73	Role of biological habitat amelioration in altering the relative responses of congeneric species to climate change. Marine Ecology - Progress Series, 2007, 334, 11-19.	1.9	70
74	Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 373-404.	8.3	573
75	Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark. Journal of Animal Ecology, 2006, 75, 176-190.	2.8	231

Habitat formed by the invasive macroalga Caulerpa filiformis (Suhr) Hering (Caulerpales,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (