Hubert Branger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7127793/publications.pdf

Version: 2024-02-01

37 papers	1,077	16	32
	citations	h-index	g-index
38	38	38	1086
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonlinear wave evolution with data-driven breaking. Nature Communications, 2022, 13, 2343.	5.8	31
2	Growth of surface wind-waves in water of finite depth: A laboratory experiment. Coastal Engineering, 2022, 177, 104174.	1.7	5
3	Formation and Evolution of a Freshwater Plume in the Northwestern Tropical Atlantic in February 2020. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016981.	1.0	17
4	Sea-Spray-Generation Dependence on Wind and Wave Combinations: A Laboratory Study. Boundary-Layer Meteorology, 2021, 180, 477-505.	1.2	12
5	Experimental study of the effect of wind above irregular waves on the wave-induced load statistics. Coastal Engineering, 2021, 168, 103940.	1.7	5
6	Experimental study of the effect of wind above focused waves and the wave-induced loading. , 2021, , .		0
7	Separatrix crossing and symmetry breaking in NLSE-like systems due to forcing and damping. Nonlinear Dynamics, 2020, 102, 2385-2398.	2.7	6
8	On the early stages of wind-wave generation under accelerated wind conditions. European Journal of Mechanics, B/Fluids, 2019, 78, 106-114.	1.2	4
9	Airâ€Sea Turbulent Fluxes From a Waveâ€Following Platform During Six Experiments at Sea. Journal of Geophysical Research: Oceans, 2019, 124, 4290-4321.	1.0	5
10	Dry deposition velocities of submicron aerosols on water surfaces: Laboratory experimental data and modelling approach. Journal of Aerosol Science, 2017, 105, 179-192.	1.8	6
11	Design of an Offshore Three-Bladed Vertical Axis Wind Turbine for Wind Tunnel Experiments. , 2017, , .		2
12	Spectral up- and downshifting of Akhmediev breathers under wind forcing. Physics of Fluids, 2017, 29, .	1.6	26
13	Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence. Scientific Reports, 2016, 6, 28516.	1.6	112
14	A New Platform for the Determination of Air–Sea Fluxes (OCARINA): Overview and First Results. Journal of Atmospheric and Oceanic Technology, 2014, 31, 1043-1062.	0.5	9
15	Gray solitons on the surface of water. Physical Review E, 2014, 89, 011002.	0.8	16
16	Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model. Physics of Fluids, 2013, 25, .	1.6	59
17	Measurement in a wind tunnel of dry deposition velocities of submicron aerosol with associated turbulence onto rough and smooth urban surfaces. Journal of Aerosol Science, 2013, 55, 12-24.	1.8	62
18	Experimental Observation of Dark Solitons on the Surface of Water. Physical Review Letters, 2013, 110, 124101.	2.9	87

#	Article	IF	Citations
19	Growth of surface wind-waves in water of finite depth. A theoretical approach. Coastal Engineering, 2013, 77, 49-56.	1.7	13
20	Growth and dissipation of wind-forced, deep-water waves. Journal of Fluid Mechanics, 2013, 722, 5-50.	1.4	78
21	Numerical study of the hydrodynamics of regular waves breaking over a sloping beach. European Journal of Mechanics, B/Fluids, 2011, 30, 552-564.	1.2	27
22	Air Flow Structure Over Short-gravity Breaking Water Waves. Boundary-Layer Meteorology, 2008, 126, 477-505.	1.2	81
23	Stress above Wind-Plus-Paddle Waves: Modeling of a Laboratory Experiment. Journal of Physical Oceanography, 2007, 37, 2824-2837.	0.7	21
24	A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. Journal of Fluid Mechanics, 2007, 588, 353-397.	1.4	132
25	Bound and free surface waves in a large wind-wave tank. Journal of Geophysical Research, 2004, 109, .	3.3	21
26	Analysis of random nonlinear water waves: the Stokes–Woodward technique. Comptes Rendus - Mecanique, 2003, 331, 189-196.	2.1	3
27	The FETCH experiment: An overview. Journal of Geophysical Research, 2003, 108, .	3.3	45
28	A time-frequency application with the stokes-woodward technique. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 2670-2673.	2.7	0
29	A New Shipborne Microwave Refractometer for Estimating the Evaporation Flux at the Sea Surface. Journal of Atmospheric and Oceanic Technology, 2001, 18, 459-475.	0.5	12
30	On short-crested waves: experimental and analytical investigations. European Journal of Mechanics, B/Fluids, 1999, 18, 889-930.	1.2	35
31	The influence of oblique waves on the azimuthal response of a Ku-band scatterometer: a laboratory study. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37, 36-47.	2.7	4
32	Air flow separation over unsteady breaking waves. Physics of Fluids, 1999, 11, 1959-1961.	1.6	77
33	An assessment of veering wind effects on scatterometry from the sea surface. International Journal of Remote Sensing, 1995, 16, 891-903.	1.3	2
34	A Ku-band laboratory experiment on the electromagnetic bias. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31, 1165-1179.	2.7	9
35	An analysis of scatterometer returns from a water surface agitated by artificial rain: evidence that ring-waves are the main feature. International Journal of Remote Sensing, 1993, 14, 2315-2329.	1.3	49
36	Experimental comparison of scatterometric signatures from a water surface agitated by wind and artificial rain. , 0 , , .		4

ARTICLE IF CITATIONS

37 Communique on veering wind effects on scatterometry from the sea-surface.,0,,. 0