
James W Janetka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7127724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aspartyl Protease Inhibitors as Anti-Filarial Drugs. Pathogens, 2022, 11, 707.	1.2	4
2	Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opinion on Drug Discovery, 2021, 16, 513-536.	2.5	5
3	A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathogens, 2021, 17, e1009314.	2.1	19
4	An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens, 2021, 10, 71.	1.2	16
5	A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	54
6	Macrocyclic Inhibitors of HGF-Activating Serine Proteases Overcome Resistance to Receptor Tyrosine Kinase Inhibitors and Block Lung Cancer Progression. Journal of Medicinal Chemistry, 2021, 64, 18158-18174.	2.9	8
7	Heteroarylamide smoothened inhibitors: Discovery of N-[2,4-dimethyl-5-(1-methylimidazol-4-yl)phenyl]-4-(2-pyridylmethoxy)benzamide (AZD8542) and N-[5-(1H-imidazol-2-yl)-2,4-dimethyl-phenyl]-4-(2- pyridylmethoxy)benzamide (AZD7254). Bioorganic and Medicinal Chemistry. 2020. 28. 115227.	1.4	0
8	Optimizing Pyrazolopyrimidine Inhibitors of Calcium Dependent Protein Kinase 1 for Treatment of Acute and Chronic Toxoplasmosis. Journal of Medicinal Chemistry, 2020, 63, 6144-6163.	2.9	14
9	Abstract 3451: Non-genetic RTK-mediated cetuximab resistance in colorectal cancer offers multiple targets for therapeutic intervention. , 2020, , .		3
10	Identification of small molecule enzyme inhibitors as broad-spectrum anthelmintics. Scientific Reports, 2019, 9, 9085.	1.6	25
11	Piperidine carbamate peptidomimetic inhibitors of the serine proteases HGFA, matriptase and hepsin. MedChemComm, 2019, 10, 1646-1655.	3.5	8
12	Recent progress on inhibitors of the type II transmembrane serine proteases, hepsin, matriptase and matriptase-2. Future Medicinal Chemistry, 2019, 11, 743-769.	1.1	14
13	Discovery of Selective Matriptase and Hepsin Serine Protease Inhibitors: Useful Chemical Tools for Cancer Cell Biology. Journal of Medicinal Chemistry, 2019, 62, 480-490.	2.9	22
14	Hepatocyte growth factor activator inhibitor-2 stabilizes Epcam and maintains epithelial organization in the mouse intestine. Communications Biology, 2019, 2, 11.	2.0	21
15	Biphenyl Gal and GalNAc FmlH Lectin Antagonists of Uropathogenic <i>E. coli</i> (UPEC): Optimization through Iterative Rational Drug Design. Journal of Medicinal Chemistry, 2019, 62, 467-479.	2.9	18
16	Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2819-E2828.	3.3	63
17	Precision antimicrobial therapeutics: the path of least resistance?. Npj Biofilms and Microbiomes, 2018, 4, 4.	2.9	69
18	MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science, 2018, 360, 336-341.	6.0	187

James W Janetka

#	Article	IF	CITATIONS
19	Adventures in Scaffold Morphing: Discovery of Fused Ring Heterocyclic Checkpoint Kinase 1 (CHK1) Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 1061-1073.	2.9	19
20	Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics. ACS Infectious Diseases, 2018, 4, 1130-1145.	1.8	18
21	Click Chemistry Reagent for Identification of Sites of Covalent Ligand Incorporation in Integral Membrane Proteins. Analytical Chemistry, 2017, 89, 2636-2644.	3.2	20
22	Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Science Advances, 2017, 3, e1601944.	4.7	50
23	Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1. Journal of Biological Chemistry, 2017, 292, 9294-9304.	1.6	54
24	Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opinion on Drug Discovery, 2017, 12, 711-731.	2.5	71
25	Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature, 2017, 546, 528-532.	13.7	231
26	Inhibition of Calcium Dependent Protein Kinase 1 (CDPK1) by Pyrazolopyrimidine Analogs Decreases Establishment and Reoccurrence of Central Nervous System Disease by <i>Toxoplasma gondii</i> . Journal of Medicinal Chemistry, 2017, 60, 9976-9989.	2.9	57
27	Hepatocyte Growth Factor, a Key Tumor-Promoting Factor in the Tumor Microenvironment. Cancers, 2017, 9, 35.	1.7	85
28	Targeting the tumor-promoting microenvironment in MET-amplified NSCLC cells with a novel inhibitor of pro-HGF activation. Oncotarget, 2017, 8, 63014-63025.	0.8	27
29	DDIS-10. TARGETING HGF/MET IN GBM BY RESTORING SPINT2 FUNCTION. Neuro-Oncology, 2016, 18, vi49-vi49.	0.6	0
30	Antivirulence Isoquinolone Mannosides: Optimization of the Biaryl Aglycone for FimH Lectin Binding Affinity and Efficacy in the Treatment of Chronic UTI. ChemMedChem, 2016, 11, 367-373.	1.6	53
31	αâ€Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/câ€MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem, 2016, 11, 585-599.	1.6	32
32	Câ€Glycosides, Arrayâ€based Addressable Libraries, and the Versatility of Constant Current Electrochemistry. Electroanalysis, 2016, 28, 2808-2817.	1.5	3
33	Antivirulence <i>C</i> -Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections. Journal of Medicinal Chemistry, 2016, 59, 9390-9408.	2.9	84
34	Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting. Infection, Genetics and Evolution, 2016, 39, 201-211.	1.0	7
35	Mannose-derived FimH antagonists: a promising anti-virulence therapeutic strategy for urinary tract infections and Crohn's disease. Expert Opinion on Therapeutic Patents, 2016, 26, 175-197.	2.4	47
36	Identification of Small Molecule Inhibitors That Block the <i>Toxoplasma gondii</i> Rhoptry Kinase ROP18. ACS Infectious Diseases, 2016, 2, 194-206.	1.8	20

JAMES W JANETKA

#	Article	IF	CITATIONS
37	Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorganic and Medicinal Chemistry, 2015, 23, 2328-2343.	1.4	31
38	Human Urine Decreases Function and Expression of Type 1 Pili in Uropathogenic Escherichia coli. MBio, 2015, 6, e00820.	1.8	58
39	Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer. ACS Medicinal Chemistry Letters, 2014, 5, 1219-1224.	1.3	41
40	Abstract 2523: Mechanism-based inhibitors of HGFA, matriptase and hepsin for breast cancer treatment. , 2014, , .		0
41	A FimH Inhibitor Prevents Acute Bladder Infection and Treats Chronic Cystitis Caused by Multidrug-Resistant Uropathogenic Escherichia coli ST131. Journal of Infectious Diseases, 2013, 208, 921-928.	1.9	116
42	Distinguishing the Contribution of Type 1 Pili from That of Other QseB-Misregulated Factors when QseC Is Absent during Urinary Tract Infection. Infection and Immunity, 2012, 80, 2826-2834.	1.0	35
43	Combinatorial Small-Molecule Therapy Prevents Uropathogenic Escherichia coli Catheter-Associated Urinary Tract Infections in Mice. Antimicrobial Agents and Chemotherapy, 2012, 56, 4738-4745.	1.4	94
44	Lead Optimization Studies on FimH Antagonists: Discovery of Potent and Orally Bioavailable Ortho-Substituted Biphenyl Mannosides. Journal of Medicinal Chemistry, 2012, 55, 3945-3959.	2.9	112
45	Discovery of Checkpoint Kinase Inhibitor (<i>S</i>)-5-(3-Fluorophenyl)- <i>N</i> -(piperidin-3-yl)-3-ureidothiophene-2-carboxamide (AZD7762) by Structure-Based Design and Optimization of Thiophenecarboxamide Ureas. Journal of Medicinal Chemistry. 2012, 55, 5130-5142.	2.9	58
46	Discovery of novel hedgehog antagonists from cell-based screening: Isosteric modification of p38 bisamides as potent inhibitors of SMO. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4907-4911.	1.0	20
47	Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends in Molecular Medicine, 2011, 17, 88-96.	3.5	240
48	Treatment and Prevention of Urinary Tract Infection with Orally Active FimH Inhibitors. Science Translational Medicine, 2011, 3, 109ra115.	5.8	254
49	Abstract LB-197: Hepatocyte Growth Factor Activator (HGFA) Inhibitors of c-MET/RON Kinase Signaling. , 2011, , .		0
50	Structure-Based Drug Design and Optimization of Mannoside Bacterial FimH Antagonists. Journal of Medicinal Chemistry, 2010, 53, 4779-4792.	2.9	220
51	Discovery of a novel class of triazolones as Checkpoint Kinase inhibitors—Hit to lead exploration. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5133-5138.	1.0	14
52	Checkpoint kinase inhibitors: a review of the patent literature. Expert Opinion on Therapeutic Patents, 2009, 19, 165-197.	2.4	38
53	Structure-Guided Design of Potent and Selective Pyrimidylpyrrole Inhibitors of Extracellular Signal-Regulated Kinase (ERK) Using Conformational Control. Journal of Medicinal Chemistry, 2009, 52, 6362-6368.	2.9	133
54	Discovery of a novel class of 2-ureido thiophene carboxamide checkpoint kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4242-4248.	1.0	31

JAMES W JANETKA

#	Article	IF	CITATIONS
55	Keeping checkpoint kinases in line: new selective inhibitors in clinical trials. Expert Opinion on Investigational Drugs, 2008, 17, 1331-1340.	1.9	62
56	AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Molecular Cancer Therapeutics, 2008, 7, 2955-2966.	1.9	364
57	Flipped Out:  Structure-Guided Design of Selective Pyrazolylpyrrole ERK Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 1280-1287.	2.9	108
58	Inhibitors of checkpoint kinases: from discovery to the clinic. Current Opinion in Drug Discovery & Development, 2007, 10, 473-86.	1.9	23
59	Diaryldimethylpiperazine ligands with μ- and Î′-opioid receptor affinity: Synthesis of (+)-4-[(αR)-α-(4-allyl-(2S,5S)-dimethylpiperazin-1-yl)-(3-hydroxyphenyl)methyl]-N-ethyl-N-phenylbenzamide Bioorganic and Medicinal Chemistry, 2003, 11, 4761-4768,	1.4	5
60	Enantioconvergent Synthesis of (â^')-(2R,5S)-1-Allyl-2,5-dimethylpiperazine, an Intermediate to δ-Opioid Receptor Ligands. Journal of Organic Chemistry, 2003, 68, 3976-3980.	1.7	8
61	L-Selectride as a General Reagent for the O-Demethylation and N-Decarbomethoxylation of Opium Alkaloids and Derivatives1. Journal of Organic Chemistry, 1998, 63, 4392-4396.	1.7	47
62	Novel Cyclic Biphenyl Ether Peptide β-Strand Mimetics and HIV-Protease Inhibitors. Journal of the American Chemical Society, 1997, 119, 441-442.	6.6	59
63	Total Synthesis of the Cyclic Biphenyl Ether Peptides K-13 and OF4949-IllviaSNAr Macrocyclization of Peptidyl Ruthenium ï€-Arene Complexes. Journal of the American Chemical Society, 1997, 119, 6488-6495.	6.6	83
64	A Cyclic Side-Chain-Linked Biphenyl Ether Tripeptide: H3N+-cyclo-[Phe(4â^'O)-Phe-Phe(3â^'O)]-OMe.Clâ^'. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 3112-3114.	0.4	12
65	Synthesis of peptidyl ruthenium .piarene complexes: application to the synthesis of cyclic biphenyl ether peptides Journal of the American Chemical Society, 1995, 117, 10585-10586	6.6	66