## Stefan Strauf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7127347/publications.pdf Version: 2024-02-01



STEEAN STDALLE

| #  | Article                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-frequency single-photon source with polarization control. Nature Photonics, 2007, 1, 704-708.                                                  | 31.4 | 344       |
| 2  | Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Materials, 2017, 4, 031011.                 | 4.4  | 242       |
| 3  | Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nature Nanotechnology, 2018, 13, 1137-1142. | 31.5 | 198       |
| 4  | Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nature Communications, 2020, 11, 2034.                          | 12.8 | 112       |
| 5  | Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra. ACS Nano, 2017, 11, 6652-6660.                   | 14.6 | 105       |
| 6  | Single quantum dot nanolaser. Laser and Photonics Reviews, 2011, 5, 607-633.                                                                        | 8.7  | 104       |
| 7  | Photon Statistics from Coupled Quantum Dots. Physical Review Letters, 2005, 95, 137403.                                                             | 7.8  | 98        |
| 8  | Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chemical Physics Letters, 2011, 514, 141-145.                                  | 2.6  | 88        |
| 9  | Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.<br>Nature Communications, 2017, 8, 1413.            | 12.8 | 87        |
| 10 | Low-Temperature Single Carbon Nanotube Spectroscopy of sp <sup>3</sup> Quantum Defects. ACS<br>Nano, 2017, 11, 10785-10796.                         | 14.6 | 79        |
| 11 | Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Materials, 2017, 4, 021019.                                        | 4.4  | 76        |
| 12 | Quantum Light Signatures and Nanosecond Spectral Diffusion from Cavity-Embedded Carbon<br>Nanotubes. Nano Letters, 2012, 12, 1934-1941.             | 9.1  | 66        |
| 13 | Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nature Communications, 2013, 4, 2152.           | 12.8 | 58        |
| 14 | Single photon emission in WSe <sub>2</sub> up 160 K by quantum yield control. 2D Materials, 2019, 6,<br>035017.                                     | 4.4  | 53        |
| 15 | Localized States and Resultant Band Bending in Graphene Antidot Superlattices. Nano Letters, 2011, 11, 1254-1258.                                   | 9.1  | 48        |
| 16 | Determination of edge purity in bilayer graphene using μ-Raman spectroscopy. Applied Physics Letters, 2010, 97, .                                   | 3.3  | 45        |
| 17 | Optical Control of Edge Chirality in Graphene. Nano Letters, 2011, 11, 4874-4878.                                                                   | 9.1  | 45        |
| 18 | Holographic Control of Motive Shape in Plasmonic Nanogap Arrays. Nano Letters, 2011, 11, 2715-2719.                                                 | 9.1  | 41        |

STEFAN STRAUF

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Suppression of Blinking and Enhanced Exciton Emission from Individual Carbon Nanotubes. ACS Nano, 2011, 5, 2664-2670.                                             | 14.6 | 40        |
| 20 | Carbon Nanotube Color Centers in Plasmonic Nanocavities: A Path to Photon Indistinguishability at<br>Telecom Bands. Nano Letters, 2019, 19, 9037-9044.            | 9.1  | 35        |
| 21 | Coupling Spin Defects in a Layered Material to Nanoscale Plasmonic Cavities. Advanced Materials, 2022,<br>34, e2106046.                                           | 21.0 | 34        |
| 22 | Trion-Species-Resolved Quantum Beats in MoSe <sub>2</sub> . ACS Nano, 2017, 11, 11550-11558.                                                                      | 14.6 | 33        |
| 23 | Near-Unity Light Collection Efficiency from Quantum Emitters in Boron Nitride by Coupling to Metallo-Dielectric Antennas. ACS Nano, 2019, 13, 6992-6997.          | 14.6 | 31        |
| 24 | Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes. ACS Nano, 2015, 9, 6383-6393.                                                          | 14.6 | 26        |
| 25 | Probing lattice vibrations of stabilized CsPbI3 polymorphs via low-frequency Raman spectroscopy.<br>Journal of Materials Chemistry C, 2020, 8, 8896-8903.         | 5.5  | 24        |
| 26 | Exciton Dipole Orientation of Strain-Induced Quantum Emitters in WSe <sub>2</sub> . Nano Letters, 2020, 20, 5119-5126.                                            | 9.1  | 24        |
| 27 | Towards efficient quantum sources. Nature Photonics, 2010, 4, 132-134.                                                                                            | 31.4 | 21        |
| 28 | Magnetic Proximity Coupling of Quantum Emitters in WSe <sub>2</sub> to van der Waals<br>Ferromagnets. Nano Letters, 2019, 19, 7301-7308.                          | 9.1  | 21        |
| 29 | Directing Solution-Phase Nucleation To Form Organic Semiconductor Vertical Crystal Arrays. Crystal<br>Growth and Design, 2019, 19, 3461-3468.                     | 3.0  | 20        |
| 30 | Free Trions with Near-Unity Quantum Yield in Monolayer MoSe <sub>2</sub> . ACS Nano, 2022, 16, 140-147.                                                           | 14.6 | 19        |
| 31 | The effects of substitutional Fe-doping on magnetism in MoS <sub>2</sub> and WS <sub>2</sub> monolayers. Nanotechnology, 2021, 32, 095708.                        | 2.6  | 18        |
| 32 | Complete Suppression of Detrimental Polymorph Transitions in All-Inorganic Perovskites via<br>Nanoconfinement. ACS Applied Energy Materials, 2019, 2, 2948-2955.  | 5.1  | 17        |
| 33 | Remarkable long-term stability of nanoconfined metal–halide perovskite crystals against degradation<br>and polymorph transitions. Nanoscale, 2018, 10, 8320-8328. | 5.6  | 14        |
| 34 | Quantum inductance and high frequency oscillators in graphene nanoribbons. Nanotechnology, 2011, 22, 165203.                                                      | 2.6  | 13        |
| 35 | Feedback and harmonic locking of slot-type optomechanical oscillators to external low-noise reference clocks. Applied Physics Letters, 2013, 102, .               | 3.3  | 10        |
| 36 | Antiferromagnetic proximity coupling between semiconductor quantum emitters in WSe2 and van der<br>Waals ferromagnets. Nanoscale, 2021, 13, 832-841.              | 5.6  | 9         |

STEFAN STRAUF

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Aperiodic conductivity oscillations in quasiballistic graphene heterojunctions. Applied Physics<br>Letters, 2010, 97, 122106.                                           | 3.3  | 8         |
| 38 | A Systematic Study of Graphite Local Oxidation Lithography Parameters Using an Atomic Force<br>Microscope. Nanoscience and Nanotechnology Letters, 2010, 2, 185-188.    | 0.4  | 8         |
| 39 | Lasing under strong coupling. Nature Physics, 2010, 6, 244-245.                                                                                                         | 16.7 | 6         |
| 40 | Enhanced Emission from Interlayer Excitons Coupled to Plasmonic Gap Cavities. Small, 2021, 17, e2103994.                                                                | 10.0 | 6         |
| 41 | Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to<br>Metallo-Dielectric Antenna Arrays. ACS Photonics, 2018, 5, 289-294.         | 6.6  | 5         |
| 42 | Lasing woodpiles. Nature Photonics, 2011, 5, 72-74.                                                                                                                     | 31.4 | 4         |
| 43 | Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas. Nanoscale, 2018, 10, 12631-12638.               | 5.6  | 3         |
| 44 | Transconductance and Coulomb Blockade Properties of In-Plane Grown Carbon Nanotube Field Effect<br>Transistors. Nanoscience and Nanotechnology Letters, 2010, 2, 73-78. | 0.4  | 2         |
| 45 | High frequency single photon sources. , 2008, , .                                                                                                                       |      | 0         |
| 46 | Probing magnetic exchange fields by quantum emitters in a gate-tunable WSe2/ferromagnet-coupled system. , 2020, , .                                                     |      | 0         |