
Esther GarcÃ-a-Cela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7127331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms, 2022, 10, 853.	3.6	2
2	Unveiling the effect of interacting forecasted abiotic factors on growth and aflatoxin B1 production kinetics by Aspergillus flavus. Fungal Biology, 2021, 125, 89-94.	2.5	12
3	Dynamics of solute/matric stress interactions with climate change abiotic factors on growth, gene expression and ochratoxin A production by Penicillium verrucosum on a wheat-based matrix. Fungal Biology, 2021, 125, 62-68.	2.5	6
4	Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biology, 2021, 125, 115-122.	2.5	22
5	Comparative Growth Inhibition of Bread Spoilage Fungi by Different Preservative Concentrations Using a Rapid Turbidimetric Assay System. Frontiers in Microbiology, 2021, 12, 678406.	3.5	10
6	Determining future aflatoxin contamination risk scenarios for corn in Southern Georgia, USA using spatio-temporal modelling and future climate simulations. Scientific Reports, 2021, 11, 13522.	3.3	6
7	Water and temperature relations of Fusarium langsethiae strains and modelling of growth and T-2 and HT-2 mycotoxin production on oat-based matrices. International Journal of Food Microbiology, 2021, 348, 109203.	4.7	12
8	Investigation of the potential to reduce waste through sampling and spatial analysis of grain bulks. Biosystems Engineering, 2021, 207, 92-105.	4.3	2
9	Carbon dioxide production as an indicator of Aspergillus flavus colonisation and aflatoxins/cyclopiazonic acid contamination in shelled peanuts stored under different interacting abiotic factors. Fungal Biology, 2020, 124, 1-7.	2.5	13
10	Three-Dimensional Study of F. graminearum Colonisation of Stored Wheat: Post-Harvest Growth Patterns, Dry Matter Losses and Mycotoxin Contamination. Microorganisms, 2020, 8, 1170.	3.6	7
11	Solute and matric potential stress on Penicillium verrucosum: impact on growth, gene expression and ochratoxin A production. World Mycotoxin Journal, 2020, 13, 345-353.	1.4	5
12	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	4.2	26
13	Proof of concept: could snake venoms be a potential source of bioactive compounds for control of mould growth and mycotoxin production. Letters in Applied Microbiology, 2020, 71, 459-465.	2.2	0
14	Assessment of the Effect of Satureja montana and Origanum virens Essential Oils on Aspergillus flavus Growth and Aflatoxin Production at Different Water Activities. Toxins, 2020, 12, 142.	3.4	19
15	Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers. Materials Letters, 2020, 270, 127662.	2.6	28
16	Interacting Abiotic Factors Affect Growth and Aflatoxin B1 Production Profiles of Aspergillus flavus Strains on Pistachio-Based Matrices and Pistachio Nuts. Frontiers in Microbiology, 2020, 11, 624007.	3.5	18
17	Advances in post-harvest detection and control of fungal contamination of cereals. Burleigh Dodds Series in Agricultural Science, 2020, , 339-362.	0.2	2
18	Biological Control Agents for Mycotoxin Control: Are They Resilient Enough?. Progress in Biological Control, 2020, , 295-309.	0.5	1

#	Article	IF	CITATIONS
19	Influence of Two Garlic-Derived Compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), on Growth and Mycotoxin Production by Fusarium Species In Vitro and in Stored Cereals. Toxins, 2019, 11, 495.	3.4	20
20	Influence of storage environment on maize grain: CO ₂ production, dry matter losses and aflatoxins contamination. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 175-185.	2.3	29
21	Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Frontiers in Microbiology, 2019, 10, 2525.	3.5	22
22	Overview of Fungi and Mycotoxin Contamination in Capsicum Pepper and in Its Derivatives. Toxins, 2019, 11, 27.	3.4	58
23	Biological Control Products for Aflatoxin Prevention in Italy: Commercial Field Evaluation of Atoxigenic Aspergillus flavus Active Ingredients. Toxins, 2018, 10, 30.	3.4	72
24	Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum. Toxins, 2018, 10, 56.	3.4	25
25	Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions. Toxins, 2018, 10, 86.	3.4	21
26	The ``-omics'' contributions to the understanding of mycotoxin production under diverse environmental conditions. Current Opinion in Food Science, 2018, 23, 97-104.	8.0	20
27	Conidia survival of <i>Aspergillus</i> section <i>Nigri</i> , <i>Flavi</i> and <i>Circumdati</i> under <scp>UV</scp> â€A and <scp>UV</scp> â€B radiation with cycling temperature/light regime. Journal of the Science of Food and Agriculture, 2016, 96, 2249-2256.	3.5	9
28	Effect of ultraviolet radiation A and B on growth and mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media. Fungal Biology, 2015, 119, 67-78.	2.5	25
29	Fungal diversity, incidence and mycotoxin contamination in grapes from two agroâ€climatic Spanish regions with emphasis on <i>Aspergillus</i> species. Journal of the Science of Food and Agriculture, 2015, 95, 1716-1729.	3.5	31
30	Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards. International Journal of Food Microbiology, 2014, 173, 89-98.	4.7	36
31	Risk management towards food safety objective achievement regarding to mycotoxins in pistachio: The sampling and measurement uncertainty issue. Food Control, 2013, 31, 392-402.	5.5	11
32	Emerging risk management metrics in food safety: FSO, PO. How do they apply to the mycotoxin hazard?. Food Control, 2012, 25, 797-808.	5.5	33
33	Effect of preharvest anti-fungal compounds on Aspergillus steynii and A. carbonarius under fluctuating and extreme environmental conditions. International Journal of Food Microbiology, 2012, 159, 167-176.	4.7	9
34	Ochratoxigenic moulds and effectiveness of grape field antifungals in a climatic change scenario. Journal of the Science of Food and Agriculture, 2012, 92, 1455-1461.	3.5	16
35	Mould growth and mycotoxin production as affected by Equisetum arvense and Stevia rebaudiana extracts. Food Control, 2011, 22, 1378-1384.	5.5	20
36	Effect of Ultraviolet Radiation on Conidia Survival of Potential Mycotoxigenic Aspergillus Species. , 0, , .		0