Huanting Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7127269/huanting-wang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

128 22,778 446 77 h-index g-index citations papers 462 27,119 7.47 9.5 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
446	Dimethoxymethane production via CO2 hydrogenation in methanol over novel Ru based hierarchical BEA. <i>Journal of Energy Chemistry</i> , 2022 , 66, 181-189	12	O
445	Angstrom-scale ion channels towards single-ion selectivity Chemical Society Reviews, 2022,	58.5	11
444	Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis <i>Nature Communications</i> , 2022 , 13, 1189	17.4	12
443	Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels <i>Science Advances</i> , 2022 , 8, eabl5070	14.3	9
442	Waste to worth: A high-temperature water-gas shift magnetite catalyst with encapsulated core-shell structure from coal fly ash. <i>Fuel Processing Technology</i> , 2022 , 232, 107265	7.2	O
441	Photocatalytic-triggered nanopores across multilayer graphene for high-permeation membranes. <i>Chemical Engineering Journal</i> , 2022 , 443, 136253	14.7	O
440	Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. <i>Green Chemical Engineering</i> , 2021 , 2, 122-131	3	6
439	Graphene oxide patchwork membranes. <i>Nature Nanotechnology</i> , 2021 , 16, 226-227	28.7	8
438	Challenges in membrane-based liquid phase separations. <i>Green Chemical Engineering</i> , 2021 , 2, 3-13	3	4
437	Emerging Homochiral Porous Materials for Enantiomer Separation. <i>Advanced Functional Materials</i> , 2021 , 31, 2101335	15.6	8
436	Synthesis of (111) facet-engineered MgO nanosheet from coal fly ash and its superior catalytic performance for high-temperature water gas shift reaction. <i>Applied Catalysis A: General</i> , 2021 , 618, 118	132	4
435	Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation. <i>Chemistry of Materials</i> , 2021 , 33, 5233-5241	9.6	19
434	Amino-functionalized porous PDVB with high adsorption and regeneration performance for fluoride removal from water. <i>Green Chemical Engineering</i> , 2021 , 2, 224-232	3	1
433	Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. <i>Materials Today</i> , 2021 ,	21.8	16
432	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. <i>Journal of Energy Chemistry</i> , 2021 , 52, 115-120	12	34
431	Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications. <i>Coordination Chemistry Reviews</i> , 2021 , 431, 213677	23.2	13
430	Selective deoxygenation of biomass volatiles into light oxygenates catalysed by S-doped, nanosized zinc-rich scrap tyre char with in-situ formed multiple acidic sites. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119603	21.8	7

(2021-2021)

429	Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. <i>Journal of Membrane Science</i> , 2021 , 621, 118934	9.6	15
428	Cyclodextrin metal-organic framework-polymer composite membranes towards ultimate and stable enantioselectivity. <i>Journal of Membrane Science</i> , 2021 , 620, 118956	9.6	17
427	Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks. <i>ACS Nano</i> , 2021 , 15, 1240-1249	16.7	13
426	Thermally regenerable metal-organic framework with high monovalent metal ion selectivity. <i>Chemical Engineering Journal</i> , 2021 , 405, 127037	14.7	9
425	Seed-sol-assisted construction of a coffin-shaped multilamellar ZSM-5 single crystal using CTAB. <i>Chemical Communications</i> , 2021 , 57, 10624-10627	5.8	1
424	Synthetic azobenzene-containing metal-organic framework ion channels toward efficient light-gated ion transport at the subnanoscale. <i>Nanoscale</i> , 2021 , 13, 17396-17403	7.7	1
423	Multi-cycle reversible control of gas permeability in thin film composite membranes via efficient UV-induced reactions. <i>Chemical Communications</i> , 2021 , 57, 3391-3394	5.8	2
422	Bio-inspired artificial ion channels: from physical to chemical gating. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4059-4072	7.8	3
421	Rational designs of interfacial-heating solar-thermal desalination devices: recent progress and remaining challenges. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6612-6633	13	12
420	Robust Anode-Supported Cells with Fast Oxygen Release Channels for Efficient and Stable CO Electrolysis at Ultrahigh Current Densities. <i>Small</i> , 2021 , 17, e2007211	11	5
419	Metal®rganic Framework-Based Ion-Selective Membranes. <i>Advanced Materials Technologies</i> , 2021 , 6, 2000790	6.8	7
418	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. <i>Applied Physics Reviews</i> , 2021 , 8, 011407	17.3	12
417	Lithium Extraction by Emerging Metal®rganic Framework-Based Membranes. <i>Advanced Functional Materials</i> , 2021 , 31, 2105991	15.6	6
416	Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation. <i>Matter</i> , 2021 , 4, 2810-2830	12.7	5
415	Efficient Ion Sieving in Covalent Organic Framework Membranes with Sub-2-Nanometer Channels. <i>Advanced Materials</i> , 2021 , 33, e2104404	24	17
414	Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. <i>Journal of Membrane Science</i> , 2021 , 635, 119339	9.6	11
413	Photo-switchable imprinted adsorbent towards a selective phenol recovery from wastewater. <i>Chemical Engineering Journal</i> , 2021 , 421, 129549	14.7	2
412	Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. <i>Progress in Polymer Science</i> , 2021 , 122, 101450	29.6	9

411	A microchannel reactor-integrated ceramic fuel cell with dual-coupling effect for efficient power and syngas co-generation from methane. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120443	21.8	8
410	Robust Hilly Polyamide Membrane for Fast Desalination. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1070-10	Q7. <i>3</i> 7	3
409	Photo-switchable membranes constructed from graphene oxide/star-PDMS nanocomposites for gas permeation control. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 21167-21174	13	О
408	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. <i>Energy and Environmental Science</i> , 2021 , 14, 2954-3009	35.4	64
407	Nanoarchitectonics for Electrospun Membranes with Asymmetric Wettability <i>ACS Applied Materials & Acs Applied </i>	9.5	0
406	Photoresponsive Styrylpyrene-Modified MOFs for Gated Loading and Release of Cargo Molecules. <i>Chemistry of Materials</i> , 2020 , 32, 10621-10627	9.6	7
405	A thermally reduced graphene oxide membrane interlayered with an in situ synthesized nanospacer for water desalination. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25951-25958	13	6
404	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. <i>Nature Communications</i> , 2020 , 11, 5657	17.4	49
403	Sulfonated Sub-1-nm Metal-Organic Framework Channels with Ultrahigh Proton Selectivity. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9827-9833	16.4	19
402	Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. <i>Advanced Materials</i> , 2020 , 32, e2001777	24	32
401	Microporous polymer incorporated polyamide membrane for reverse osmosis desalination. <i>Journal of Membrane Science</i> , 2020 , 610, 118299	9.6	9
400	Effect of Anion Species on Ion Current Rectification Properties of Positively Charged Nanochannels. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	11
399	RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12810-12820	13	31
398	Thin-film composite polyamide membrane modified by embedding functionalized boron nitride nanosheets for reverse osmosis. <i>Journal of Membrane Science</i> , 2020 , 611, 118389	9.6	28
397	Zirconium Metal Drganic Framework Materials for Efficient Ion Adsorption and Sieving. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 12907-12923	3.9	33
396	Ultrathin water-stable metal-organic framework membranes for ion separation. <i>Science Advances</i> , 2020 , 6, eaay3998	14.3	72
395	Electrospinning preparation of PAN/TiO2/PANI hybrid fiber membrane with highly selective adsorption and photocatalytic regeneration properties. <i>Chemical Engineering Journal</i> , 2020 , 399, 125749	o ¹ 4.7	40
394	Synthesis of in-situ Al-defected iron oxide nanoflakes from coal ash: A detailed study on the structure, evolution mechanism and application to water remediation. <i>Journal of Hazardous Materials</i> 2020, 205, 122696	12.8	8

(2020-2020)

393	Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. <i>Nature Materials</i> , 2020 , 19, 767-774	27	120
392	Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered Ruddlesden-Popper oxide. <i>EcoMat</i> , 2020 , 2, e12021	9.4	24
391	Selective Permeation of Water through Angstrom-Channel Graphene Membranes for Bioethanol Concentration. <i>Advanced Materials</i> , 2020 , 32, e2002320	24	19
390	Greatly Enhanced Gas Selectivity in Mixed-Matrix Membranes through Size-Controlled Hyper-cross-linked Polymer Additives. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 13773	3-₹3782	27
389	The Role of Nanowrinkles in Mass Transport across Graphene-Based Membranes. <i>Advanced Functional Materials</i> , 2020 , 30, 2003159	15.6	19
388	Scalable TiCT MXene Interlayered Forward Osmosis Membranes for Enhanced Water Purification and Organic Solvent Recovery. <i>ACS Nano</i> , 2020 , 14, 9125-9135	16.7	62
387	Highly permeable and selective mixed-matrix membranes for hydrogen separation containing PAF-1. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14713-14720	13	12
386	Boosting the oxygen evolution catalytic performance of perovskites via optimizing calcination temperature. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6480-6486	13	19
385	A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. <i>Nature Communications</i> , 2020 , 11, 927	17.4	44
384	Synthesis of oxymethylene dimethyl ethers (OMEn) via methanol mediated COx hydrogenation over Ru/BEA catalysts. <i>Applied Catalysis B: Environmental</i> , 2020 , 269, 118765	21.8	9
383	One-pot fabrication of CdxZn1-xS/ZnO nanohybrid using mixed sulfur sources for photocatalysis. <i>Materials Research Bulletin</i> , 2020 , 125, 110776	5.1	12
382	Smart ZIF-L mesh films with switchable superwettability synthesized via a rapid energy-saving process. <i>Separation and Purification Technology</i> , 2020 , 240, 116647	8.3	13
381	Efficient Gating of Ion Transport in Three-Dimensional MetalDrganic Framework Sub-Nanochannels with Confined Light-Responsive Azobenzene Molecules. <i>Angewandte Chemie</i> , 2020 , 132, 13151-13156	3.6	3
380	Efficient Gating of Ion Transport in Three-Dimensional Metal-Organic Framework Sub-Nanochannels with Confined Light-Responsive Azobenzene Molecules. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13051-13056	16.4	27
379	Integration of plasmonic effect into MIL-125-NH: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants. <i>Chemosphere</i> , 2020 , 242, 125197	8.4	14
378	Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. <i>Journal of Alloys and Compounds</i> , 2020 , 816, 152684	5.7	11
377	Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide. <i>Advanced Materials</i> , 2020 , 32, e1905025	24	122
376	Dimethoxymethane Production via Catalytic Hydrogenation of Carbon Monoxide in Methanol Media. ACS Sustainable Chemistry and Engineering, 2020 , 8, 2081-2092	8.3	8

375	Porous 2D carbon nanosheets synthesized via organic groups triggered polymer particles exfoliation: An effective cathode catalyst for polymer electrolyte membrane fuel cells. <i>Electrochimica Acta</i> , 2020 , 332, 135397	6.7	4
374	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. <i>IScience</i> , 2020 , 23, 100761	6.1	19
373	Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22251-22256	13	11
372	A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine. Journal of Materials Chemistry A, 2020 , 8, 16212-16217	13	26
371	Efficient Water Splitting Actualized through an Electrochemistry-Induced Hetero-Structured Antiperovskite/(Oxy)Hydroxide Hybrid. <i>Small</i> , 2020 , 16, e2006800	11	13
370	A sunlight-responsive metal@rganic framework system for sustainable water desalination. <i>Nature Sustainability</i> , 2020 , 3, 1052-1058	22.1	53
369	Electricity Generation from Ammonia in Landfill Leachate by an Alkaline Membrane Fuel Cell Based on Precious-Metal-Free Electrodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12817-12824	8.3	11
368	Tailoring molecular interactions between microporous polymers in high performance mixed matrix membranes for gas separations. <i>Nanoscale</i> , 2020 , 12, 17405-17410	7.7	6
367	Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. <i>Energy and Environmental Science</i> , 2020 , 13, 3361-3392	35.4	151
366	Pd-ZIF-L-GO ternary nanolaminates for enhanced heterogeneous catalysis. 2D Materials, 2020 , 7, 01500	015.9	4
366 365	Pd-ZIF-L-GO ternary nanolaminates for enhanced heterogeneous catalysis. 2D Materials, 2020, 7, 01500 Metal Drganic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment 2020, 163-194	0 1 5.9	10
	Metal®rganic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable	0 1 5.9	
365	Metal©rganic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment 2020 , 163-194 Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small		10
365 364	Metal©rganic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment 2020 , 163-194 Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. <i>Advanced Materials</i> , 2020 , 32, e1902009 Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a	24	10 70
365 364 363	Metal®rganic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment 2020, 163-194 Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. Advanced Materials, 2020, 32, e1902009 Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Small, 2020, 16, e2001204 Homochiral MOFPolymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules.	24	10 70 34
365 364 363 362	MetalDrganic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment 2020, 163-194 Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. Advanced Materials, 2020, 32, e1902009 Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Small, 2020, 16, e2001204 Homochiral MOFPolymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, 17084-17091 Homochiral MOF-Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules.	24 11 3.6	10 70 34
365 364 363 362 361	MetalDrganic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment 2020, 163-194 Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. Advanced Materials, 2020, 32, e1902009 Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Small, 2020, 16, e2001204 Homochiral MOFPolymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, 17084-17091 Homochiral MOF-Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie - International Edition, 2019, 58, 16928-16935 Unusual synergistic effect in layered Ruddlesden-Popper oxide enables ultrafast hydrogen	24 11 3.6	10 70 34 14 77

(2019-2019)

357	Solvation Effects on the Permeation and Aging Performance of PIM-1-Based MMMs for Gas Separation. <i>ACS Applied Materials & Discrete Separation</i> , 11, 6502-6511	9.5	26
356	Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nature Communications, 2019 , 10, 2490	17.4	89
355	2D Laminar Membranes for Selective Water and Ion Transport. <i>Advanced Functional Materials</i> , 2019 , 29, 1902014	15.6	121
354	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14222-14232	13	32
353	Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. <i>Energy and Environmental Science</i> , 2019 , 12, 1840-1847	35.4	198
352	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. <i>Angewandte Chemie</i> , 2019 , 131, 17674-17689	3.6	32
351	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17512-17527	16.4	111
350	Nitrogen-Rich, Well-Dispersed Nanoporous Carbon Materials for Super-Efficient Oxygen Reduction Reaction. <i>ChemElectroChem</i> , 2019 , 6, 1894-1900	4.3	3
349	Super-Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. <i>Small</i> , 2019 , 15, e1903120	11	43
348	Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers. <i>Journal of Membrane Science</i> , 2019 , 592, 117363	9.6	50
347	Water Pollution Control for Sustainable Development. <i>Engineering</i> , 2019 , 5, 839-840	9.7	7
346	Monovalent Cation-Phenolic Crystals with pH-Driven Reversible Crystal Transformation. <i>Chemistry - A European Journal</i> , 2019 , 25, 12281-12287	4.8	5
345	Frontispiece: Homochiral MOFPolymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. <i>Angewandte Chemie - International Edition</i> , 2019 , 58,	16.4	1
344	Chapter 13:Thermo-responsive Membranes with Switchable Superhydrophilicity and Superhydrophobicity for Oil Water Separation. <i>RSC Smart Materials</i> , 2019 , 362-388	0.6	
343	Tannic acid coating and in situ deposition of silver nanoparticles to improve the antifouling properties of an ultrafiltration membrane. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47314	2.9	10
342	Bioinspired Self-Gating Nanofluidic Devices for Autonomous and Periodic Ion Transport and Cargo Release. <i>Advanced Functional Materials</i> , 2019 , 29, 1806416	15.6	18
341	Fouling and cleaning of polymer-entwined graphene oxide nanocomposite membrane for forward osmosis process. <i>Separation Science and Technology</i> , 2019 , 54, 1376-1386	2.5	5
340	Thin-Film Composite Membrane with Interlayer Decorated Metal©rganic Framework UiO-66 toward Enhanced Forward Osmosis Performance. <i>Industrial & Description of Chemistry Research</i> , 2019 , 58, 195-206	3.9	49

339	Construction of porous N-doped graphene layer for efficient oxygen reduction reaction. <i>Chemical Engineering Science</i> , 2019 , 194, 36-44	4.4	24
338	A Magnetic Gated Nanofluidic Based on the Integration of a Superhydrophilic Nanochannels and a Reconfigurable Ferrofluid. <i>Advanced Materials</i> , 2019 , 31, e1805953	24	15
337	Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO capture. <i>Journal of Colloid and Interface Science</i> , 2018 , 519, 38-43	9.3	32
336	Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. <i>Catalysis Today</i> , 2018 , 314, 20-27	5.3	57
335	Synergistically enhanced hydrogen evolution electrocatalysis by in situ exsolution of metallic nanoparticles on perovskites. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13582-13587	13	56
334	Improved filtration performance and antifouling properties of polyethersulfone ultrafiltration membranes by blending with carboxylic acid functionalized polysulfone <i>RSC Advances</i> , 2018 , 8, 7774-7	784	25
333	Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7668-7674	13	54
332	Low-energy desalination. <i>Nature Nanotechnology</i> , 2018 , 13, 273-274	28.7	24
331	Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. <i>Science Advances</i> , 2018 , 4, eaaq0066	14.3	214
330	Vertically-heterostructured TiO2-Ag-rGO ternary nanocomposite constructed with {001} facetted TiO2 nanosheets for enhanced Pt-free hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 1508-1515	6.7	23
329	Zeolitic imidazolate framework-8 film coated stainless steel meshes for highly efficient oil/water separation. <i>Chemical Communications</i> , 2018 , 54, 5530-5533	5.8	47
328	GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H/CO separation. <i>Chemical Science</i> , 2018 , 9, 4132-4141	9.4	76
327	Modified metal-organic frameworks as photocatalysts. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 317-342	21.8	243
326	Study of cobalt molybdenum oxide supported on mesoporous silica for liquid phase cyclohexane oxidation. <i>Catalysis Today</i> , 2018 , 310, 116-129	5.3	20
325	Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 82, 761-780	16.2	212
324	Thermoresponsive Amphoteric Metal-Organic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water. <i>Advanced Materials</i> , 2018 , 30, e1802767	24	28
323	Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers. Journal of Membrane Science, 2018 , 565, 380-389	9.6	77
322	Water Desalination: Thermoresponsive Amphoteric Metal©rganic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water (Adv. Mater. 34/2018). <i>Advanced Materials</i> , 2018 , 30, 1870256	24	1

321	Solttel Synthesis of Metalthenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie, 2018 , 130, 9986-9991	3.6	22
320	Sol-Gel Synthesis of Metal-Phenolic Coordination Spheres and Their Derived Carbon Composites. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9838-9843	16.4	69
319	The enhanced hydrogen separation performance of mixed matrix membranes by incorporation of two-dimensional ZIF-L into polyimide containing hydroxyl group. <i>Journal of Membrane Science</i> , 2018 , 549, 260-266	9.6	60
318	A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine. <i>Journal of Membrane Science</i> , 2018 , 548, 363-371	9.6	47
317	Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption. <i>Environmental Science: Nano</i> , 2018 , 5, 3023-3031	7.1	25
316	Functionalized Boron Nitride Nanosheets: A Thermally Rearranged Polymer Nanocomposite Membrane for Hydrogen Separation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16056-16061	16.4	24
315	Coal Waste to Two-Dimensional Materials: Fabrication of Fe2O3 Nanosheets and MgO Nanosheets from Brown Coal Fly Ash. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15982-15987	8.3	10
314	Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation. <i>Angewandte Chemie</i> , 2018 , 130, 17376-17380	3.6	29
313	Functionalized Boron Nitride Nanosheets: A Thermally Rearranged Polymer Nanocomposite Membrane for Hydrogen Separation. <i>Angewandte Chemie</i> , 2018 , 130, 16288-16293	3.6	24
312	Sensors: Self-Template Synthesis of Mesoporous Metal Oxide Spheres with Metal-Mediated Inner Architectures and Superior Sensing Performance (Adv. Funct. Mater. 51/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870364	15.6	3
311	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO2 to Alcohol. <i>ACS Energy Letters</i> , 2018 , 3, 264	1 3- 2 6 5!	5 ¹⁰
310	Self-Template Synthesis of Mesoporous Metal Oxide Spheres with Metal-Mediated Inner Architectures and Superior Sensing Performance. <i>Advanced Functional Materials</i> , 2018 , 28, 1806144	15.6	39
309	Bacteriorhodopsin-Inspired Light-Driven Artificial Molecule Motors for Transmembrane Mass Transportation. <i>Angewandte Chemie</i> , 2018 , 130, 16950-16954	3.6	4
308	Bacteriorhodopsin-Inspired Light-Driven Artificial Molecule Motors for Transmembrane Mass Transportation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16708-16712	16.4	22
307	Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17130-17134	16.4	67
306	Thin-Film Nanocomposite Forward-Osmosis Membranes on Hydrophilic Microfiltration Support with an Intermediate Layer of Graphene Oxide and Multiwall Carbon Nanotube. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 10, 34464-34474	9.5	69
305	Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	15
304	Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination. Journal of Membrane Science, 2018 , 562, 47-55	9.6	42

303	Microporous carbon from fullerene impregnated porous aromatic frameworks for improving the desalination performance of thin film composite forward osmosis membranes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11327-11336	13	28
302	Mutation burden and other molecular markers of prognosis in colorectal cancer treated with curative intent: results from the QUASAR 2 clinical trial and an Australian community-based series. <i>The Lancet Gastroenterology and Hepatology</i> , 2018 , 3, 635-643	18.8	40
301	Materials and Design of Photocatalytic Membranes 2018 , 71-96		2
300	Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption. <i>Journal of Colloid and Interface Science</i> , 2017 , 493, 150-161	9.3	43
299	Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation. <i>Chemistry - A European Journal</i> , 2017 , 23, 3291-3299	4.8	15
298	Ab Initio Simulations To Understand the Leaf-Shape Crystal Morphology of ZIF-L with Two-Dimensional Layered Network. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 2221-2227	3.8	26
297	Oscillatory Reaction Induced Periodic C-Quadruplex DNA Gating of Artificial Ion Channels. <i>ACS Nano</i> , 2017 , 11, 3022-3029	16.7	62
296	A hierarchically structured PtCo nanoflakesflanotube as an electrocatalyst for methanol oxidation. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 845-849	6.8	5
295	Conductivity and redox stability of new perovskite oxides SrFe0.7TM0.2Ti0.1O3-[[TM = Mn, Fe, Co, Ni, Cu). <i>Solid State Ionics</i> , 2017 , 301, 99-105	3.3	6
294	Structure induced selective adsorption performance of ZIF-8 nanocrystals in water. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 520, 661-667	5.1	49
293	Synthesis of Li2Ni2(MoO4)3 as a high-performance positive electrode for asymmetric supercapacitors. <i>RSC Advances</i> , 2017 , 7, 13304-13311	3.7	25
292	Hybridizing TiO2 with Nitrogen-Doped Carbon: A New Route to A Highly Visible Light-Active Photocatalyst. <i>ChemistrySelect</i> , 2017 , 2, 1565-1572	1.8	11
291	Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates. <i>Mikrochimica Acta</i> , 2017 , 184, 2805-2813	5.8	15
290	Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. <i>Nanoscale</i> , 2017 , 9, 7822-7829	7:7	39
289	Periodic oscillation of ion conduction of nanofluidic diodes using a chemical oscillator. <i>Nanoscale</i> , 2017 , 9, 7297-7304	7.7	14
288	Fast-responsive monolithic hydrogels as draw agent for forward osmosis membrane process. <i>Separation Science and Technology</i> , 2017 , 52, 2583-2590	2.5	11
287	ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. <i>Carbon</i> , 2017 , 121, 330-336	10.4	124
286	A Comparative Study of Constitutive and Neural Network Models for Flow Behavior of Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y Alloy and Processing Maps. <i>Journal of Materials Engineering and Performance</i> 2017 26 2368-2376	1.6	3

285	Morphology control of mesoporous silica-carbon nanocomposites via phase separation of poly(furfuryl alcohol) and silica in the solgel synthesis. <i>Journal of Sol-Gel Science and Technology</i> , 2017 , 82, 664-674	2.3	3
284	Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. <i>Nanoscale</i> , 2017 , 9, 5323-5328	7.7	104
283	Graphene oxide/coreBhell structured metalBrganic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10182-10189	13	128
282	Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metalBrganic framework molecular sieving membrane. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16255	-1 <u>6</u> 262	30
281	Highly crosslinked, chlorine tolerant polymer network entwined graphene oxide membrane for water desalination. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1533-1540	13	67
280	Improvement of the Swelling Properties of Ionic Hydrogels by the Incorporation of Hydrophobic, Elastic Microfibers for Forward Osmosis Applications. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 505-512	3.9	17
279	Preparation of porous diffusion dialysis membranes by functionalization of polysulfone for acid recovery. <i>Journal of Membrane Science</i> , 2017 , 524, 557-564	9.6	38
278	Synthesis of NiMoS4for High-Performance Hybrid Supercapacitors. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2881-A2888	3.9	37
277	Unique hybrid NiP/MoO@MoS nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. <i>Nanoscale</i> , 2017 , 9, 17349-17356	7.7	36
276	Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. <i>Journal of Membrane Science</i> , 2017 , 544, 342-350	9.6	49
275	Highly fouling-resistant brominated poly(phenylene oxide) membranes using surface grafted diethylenetriamine. <i>RSC Advances</i> , 2017 , 7, 37324-37330	3.7	3
274	Hydrogen storage properties of highly cross-linked polymers derived from chlorinated polypropylene and polyethylenimine. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 23028-23034	6.7	8
273	Temperature-induced oriented growth of large area, few-layer 2D metal-organic framework nanosheets. <i>Chemical Communications</i> , 2017 , 53, 13161-13164	5.8	39
272	A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16865-16872	13	36
271	Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. <i>Applied Catalysis B: Environmental</i> , 2017 , 218, 470-479	21.8	65
270	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. <i>Nano Today</i> , 2017 , 15, 26-55	17.9	367
269	Preparation of high-flux ultrafiltration membranes by blending strongly charged polymer. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	4
268	Highly stable hydrophobic SiNCO nanoparticle-modified silicon nitride membrane for zero-discharge water desalination. <i>AICHE Journal</i> , 2017 , 63, 1272-1277	3.6	32

267	Graphene/titanium carbide composites prepared by solgel infiltration and spark plasma sintering. <i>Ceramics International</i> , 2016 , 42, 122-131	5.1	33
266	Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. <i>Oncogene</i> , 2016 , 35, 2584-91	9.2	4
265	Self-assembled one-dimensional MnO2@zeolitic imidazolate framework-8 nanostructures for highly efficient arsenite removal. <i>Environmental Science: Nano</i> , 2016 , 3, 1186-1194	7.1	60
264	Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. <i>Microporous and Mesoporous Materials</i> , 2016 , 236, 28-37	5.3	67
263	Hydrothermal Synthesis of Metal P olyphenol Coordination Crystals and Their Derived Metal/N-doped Carbon Composites for Oxygen Electrocatalysis. <i>Angewandte Chemie</i> , 2016 , 128, 12658	3-72662	2 32
262	Hydrothermal Synthesis of Metal-Polyphenol Coordination Crystals and Their Derived Metal/N-doped Carbon Composites for Oxygen Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12470-4	16.4	140
261	Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes. Journal of the American Chemical Society, 2016 , 138, 16372-16379	16.4	55
260	Achieving Both High Selectivity and Current Density for CO2 Reduction to Formate on Nanoporous Tin Foam Electrocatalysts. <i>ChemistrySelect</i> , 2016 , 1, 1711-1715	1.8	30
259	Metal link: A strategy to combine graphene and titanium dioxide for enhanced hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 22034-22042	6.7	16
258	Highly stable enzymatic membrane for fast treatment of antibiotic-polluted water. <i>Journal of Membrane Science</i> , 2016 , 518, 1-9	9.6	9
257	Preparation of a hybrid Cu2O/CuMoO4 nanosheet electrode for high-performance asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17749-17756	13	58
256	A one-dimensional material as a nano-scaffold and a pseudo-seed for facilitated growth of ultrathin, mechanically reinforced molecular sieving membranes. <i>Chemical Communications</i> , 2016 , 52, 13764-13767	5.8	26
255	Preparation of supported photocatalytic membrane from mesoporous titania spheres for humic acid removal from wastewater. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2016 , 11, 611-619	1.3	3
254	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. <i>Angewandte Chemie</i> , 2016 , 128, 2088-2092	3.6	53
253	Synthesis of Nitrogen-Doped Porous Carbon Nanocubes as a Catalyst Support for Methanol Oxidation. <i>ChemCatChem</i> , 2016 , 8, 1901-1904	5.2	13
252	Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. <i>Applied Catalysis B: Environmental</i> , 2016 , 198, 224-233	21.8	74
251	Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10878-10884	13	129
250	A Versatile Iron-Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1355-9	16.4	181

249	Conductivity and redox stability of new double perovskite oxide Sr1.6K0.4Fe1+x Mo1 $\boxed{2}$ O6 $\boxed{1}$ x = 0.2, 0.4, 0.6). <i>Journal of Materials Science</i> , 2016 , 51, 4115-4124	4.3	9
248	The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. <i>Journal of Membrane Science</i> , 2016 , 501, 169-178	9.6	81
247	Rapid Construction of ZnO@ZIF-8 Heterostructures with Size-Selective Photocatalysis Properties. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2016 , 8, 9080-7	9.5	217
246	Microfiber-polymer hydrogel monolith as forward osmosis draw agent. <i>Journal of Membrane Science</i> , 2016 , 510, 426-436	9.6	17
245	Growth of g-C 3 N 4 on mesoporous TiO 2 spheres with high photocatalytic activity under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2016 , 188, 342-350	21.8	147
244	Aqueous Phase Synthesis of ZIF-8 Membrane with Controllable Location on an Asymmetrically Porous Polymer Substrate. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 6236-44	9.5	67
243	Porous diffusion dialysis membranes for rapid acid recovery. <i>Journal of Membrane Science</i> , 2016 , 502, 76-83	9.6	39
242	Robust Thermoresponsive Polymer Composite Membrane with Switchable Superhydrophilicity and Superhydrophobicity for Efficient Oil-Water Separation. <i>Environmental Science & amp; Technology</i> , 2016 , 50, 906-14	10.3	156
241	Cobalt molybdenum oxide catalysts for selective oxidation of cyclohexane. AICHE Journal, 2016, 62, 43	8 4.4 40	2 18
240	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2048-52	16.4	230
239	A Versatile Iron Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction. <i>Angewandte Chemie</i> , 2016 , 128, 1377-1	381	55
238	Hydrogel-polyurethane interpenetrating network material as an advanced draw agent for forward osmosis process. <i>Water Research</i> , 2016 , 96, 292-8	12.5	34
237	Structurally confined ultrafine NiO nanoparticles on graphene as a highly efficient and durable electrode material for supercapacitors. <i>RSC Advances</i> , 2016 , 6, 51356-51366	3.7	13
236	Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery. <i>Journal of Membrane Science</i> , 2016 , 510, 437-446	9.6	18
235	Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. <i>Progress in Polymer Science</i> , 2016 , 61, 104-155	29.6	250
234	An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16953-16960	13	59
233	ZIF-derived nitrogen-doped carbon/3D graphene frameworks for all-solid-state supercapacitors. <i>RSC Advances</i> , 2016 , 6, 76575-76581	3.7	14
232	A Facile Chemical-Free and Universal Method for Transfer of Ultrathin Graphene-Based Films. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600540	4.6	2

231	Investigating forward osmosis process for simultaneous preparation of brown coal slurry and wastewater reclamation. <i>Fuel Processing Technology</i> , 2015 , 131, 414-420	7.2	8
230	Polymer Hydrogels as Smart Draw Agents in Forward Osmosis Processes 2015 , 129-149		1
229	Precisely tailoring ZIF-67 nanostructures from cobalt carbonate hydroxide nanowire arrays: toward high-performance battery-type electrodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16688-16694	13	58
228	Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15715-15722	13	118
227	Preparation and characterization of thin-film composite membrane with nanowire-modified support for forward osmosis process. <i>Membranes</i> , 2015 , 5, 136-49	3.8	23
226	A graphene-directed assembly route to hierarchically porous CoNx/C catalysts for high-performance oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16867-16873	13	135
225	Cooperative Reformable Channel System with Unique Recognition of Gas Molecules in a Zeolitic Imidazolate Framework with Multilevel Flexible Ligands. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 167	762 ⁻ 16	 768
224	Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15274-15279	13	33
223	Self-curled coral-like EALD Thanoplates for use as an adsorbent. <i>Journal of Colloid and Interface Science</i> , 2015 , 453, 244-251	9.3	31
222	Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks. <i>CrystEngComm</i> , 2015 , 17, 4970-4976	3.3	55
221	Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts. <i>Nanoscale</i> , 2015 , 7, 6247-54	7.7	93
220	Composite ultrafiltration membranes from polymer and its quaternary phosphonium-functionalized derivative with enhanced water flux. <i>Journal of Membrane Science</i> , 2015 , 482, 67-75	9.6	40
219	Polysulfone and Its Quaternary Phosphonium Derivative Composite Membranes with High Water Flux. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 3333-3340	3.9	11
218	Enhancement of the Antifouling Properties and Filtration Performance of Poly(ethersulfone) Ultrafiltration Membranes by Incorporation of Nanoporous Titania Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 11188-11198	3.9	49
217	Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. <i>ACS Nano</i> , 2015 , 9, 12264-73	16.7	69
216	A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process. <i>Journal of Power Sources</i> , 2015 , 277, 261-267	8.9	34
215	Graphene-Directed Supramolecular Assembly of Multifunctional Polymer Hydrogel Membranes. <i>Advanced Functional Materials</i> , 2015 , 25, 126-133	15.6	62
214	Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. <i>Advanced Materials</i> , 2015 , 27, 249-54	24	342

(2014-2015)

213	Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. <i>Journal of Membrane Science</i> , 2015 , 475, 281-289	9.6	145
212	Bio-inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control. <i>Small</i> , 2015 , 11, 786-91	11	54
211	Electrocatalysts: Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction (Adv. Funct. Mater. 36/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 5876-5876	15.6	7
21 0	Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction. <i>Advanced Functional Materials</i> , 2015 , 25, 5768-5777	15.6	328
209	Carbon Nanotube/Alumina/Polyethersulfone Hybrid Hollow Fiber Membranes with Enhanced Mechanical and Anti-Fouling Properties. <i>Nanomaterials</i> , 2015 , 5, 1366-1378	5.4	27
208	Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. <i>Chemical Communications</i> , 2015 , 51, 11474-7	5.8	90
207	Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. <i>RSC Advances</i> , 2015 , 5, 48433-48441	3.7	162
206	Impact of trace graphene oxide in coagulation bath on morphology and performance of polysulfone ultrafiltration membrane. <i>Separation and Purification Technology</i> , 2015 , 147, 364-371	8.3	23
205	Fabrication of asymmetrical diffusion dialysis membranes for rapid acid recovery with high purity. Journal of Materials Chemistry A, 2015 , 3, 24000-24007	13	37
204	Inorganic particle enhanced polymer hollow fiber membranes with high mechanical properties. <i>Materials Chemistry and Physics</i> , 2015 , 167, 209-218	4.4	16
203	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. <i>Scientific Reports</i> , 2014 , 4, 7420	4.9	8
202	Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. <i>Scientific Reports</i> , 2014 , 4, 4334	4.9	59
201	Facile synthesis of nanoporous TiCBiCII composites as a novel counter-electrode for dye sensitized solar cells. <i>Microporous and Mesoporous Materials</i> , 2014 , 190, 309-315	5.3	17
200	Self-assembled highly crystalline TiO2 mesostructures for sunlight-driven, pH-responsive photodegradation of dyes. <i>Materials Research Bulletin</i> , 2014 , 55, 13-18	5.1	15
199	Carbon composite membrane derived from a two-dimensional zeolitic imidazolate framework and its gas separation properties. <i>Carbon</i> , 2014 , 72, 242-249	10.4	43
198	Modification of PES membrane with AgBiO2: Reduction of biofouling and improvement of filtration performance. <i>Desalination</i> , 2014 , 336, 8-17	10.3	63
197	A fast in situ seeding route to the growth of a zeolitic imidazolate framework-8/AAO composite membrane at room temperature. <i>RSC Advances</i> , 2014 , 4, 7634	3.7	22
196	Hydrophilic nanowire modified polymer ultrafiltration membranes with high water flux. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 19161-7	9.5	16

195	UV/ozone-assisted low temperature preparation of mesoporous TiO2 with tunable phase composition and enhanced solar light photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18791-18795	13	8
194	Crystal Transformation in Zeolitic-Imidazolate Framework. Crystal Growth and Design, 2014, 14, 6589-6	598 ,	120
193	SiC nanofiber reinforced porous ceramic hollow fiber membranes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5841	13	30
192	Three-dimensional branched single-crystal <code>#Co(OH)2</code> nanowire array and its application for supercapacitor with excellent electrochemical property. <i>Nano Energy</i> , 2014 , 10, 153-162	17.1	53
191	Synthesis and Characterization of Chitosan-Grafted BPPO Ultrafiltration Composite Membranes with Enhanced Antifouling and Antibacterial Properties. <i>Industrial & Description of Chemistry Research</i> , 2014 , 53, 14974-14981	3.9	25
190	Slow hydrophobic hydration induced polymer ultrafiltration membranes with high water flux. <i>Journal of Membrane Science</i> , 2014 , 471, 27-34	9.6	26
189	High-performance ionic diode membrane for salinity gradient power generation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12265-72	16.4	322
188	TiO2 based photocatalytic membranes: A review. <i>Journal of Membrane Science</i> , 2014 , 472, 167-184	9.6	328
187	ZIF-11/Polybenzimidazole composite membrane with improved hydrogen separation performance. Journal of Applied Polymer Science, 2014 , 131, n/a-n/a	2.9	16
186	Direct conversion of two-dimensional ZIF-L film to porous ZnO nano-sheet film and its performance as photoanode in dye-sensitized solar cell. <i>Microporous and Mesoporous Materials</i> , 2014 , 194, 1-7	5.3	47
185	Nickel aluminate spinel reinforced ceramic hollow fibre membrane. <i>Journal of Membrane Science</i> , 2014 , 450, 418-424	9.6	35
184	Hollow carbon beads fabricated by phase inversion method for efficient oil sorption. <i>Carbon</i> , 2014 , 69, 25-31	10.4	42
183	Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. <i>Microporous and Mesoporous Materials</i> , 2014 , 184, 55-60	5.3	247
182	Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. <i>Journal of Membrane Science</i> , 2014 , 460, 9-17	9.6	74
181	Response to osmotic pressure versus swelling pressure: comment on "bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy". <i>Environmental Science & Environmental & Environm</i>	10.3	30
180	In situ growth of Co3O4 nanoparticles on \text{\text{H}}MnO2 nanotubes: a new hybrid for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8465-8471	13	40
179	Hollow carbon beads for significant water evaporation enhancement. <i>Chemical Engineering Science</i> , 2014 , 116, 704-709	4.4	76
178	Modelling of Solar Evaporation Assisted by Floating Light-Absorbing Porous Materials. <i>Current Environmental Engineering</i> , 2014 , 1, 73-81	1.6	3

177	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. <i>NPG Asia Materials</i> , 2014 , 6, e117-e117	10.3	30
176	Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. <i>Chemical Society Reviews</i> , 2014 , 43, 4470-93	58.5	463
175	Fibrous NiO/CeO2 nanocatalysts for the partial oxidation of methane at microsecond contact times. <i>RSC Advances</i> , 2013 , 3, 1341-1345	3.7	13
174	Synthesis and Evolution of Zirconium Carbide via Sol L el Route: Features of Nanoparticle Oxide L arbon Reactions. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1099-1106	3.8	29
173	Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. <i>Ceramics International</i> , 2013 , 39, 7551-7556	5.1	46
172	Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent. <i>RSC Advances</i> , 2013 , 3, 887-894	3.7	85
171	One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. <i>Colloid and Polymer Science</i> , 2013 , 291, 2711-2717	2.4	35
170	Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. <i>Dalton Transactions</i> , 2013 , 42, 16608-13	4.3	84
169	A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. <i>Chemical Communications</i> , 2013 , 49, 9500-2	5.8	356
168	Synthesis of Zeolitic Imidazolate Framework-7 in a Water/Ethanol Mixture and Its Ethanol-Induced Reversible Phase Transition. <i>ChemPlusChem</i> , 2013 , 78, 1222-1225	2.8	44
167	Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy. <i>Environmental Science & Environmental & Environmenta</i>	10.3	84
166	Smart draw agents for emerging forward osmosis application. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14049	13	62
165	Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. <i>Desalination</i> , 2013 , 330, 70-78	10.3	129
164	Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9208	13	70
163	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. <i>Journal of Power Sources</i> , 2013 , 231, 177-185	8.9	26
162	ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11563	13	208
161	Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. <i>Water Research</i> , 2013 , 47, 209-15	12.5	121
160	Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method. <i>Microporous and Mesoporous Materials</i> , 2013 , 179, 10-16	5.3	59

159	Sawtooth-shaped nickel-based submicrowires and their electrocatalytic activity for methanol oxidation in alkaline media. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 11863-11869	6.7	11
158	Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2013 , 551, 125-130	5.7	70
157	Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. <i>Journal of Membrane Science</i> , 2013 , 444, 252-258	9.6	30
156	Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 913-920	14.7	98
155	Thin Film Nanocomposite Membranes for Water Desalination 2013 , 163-194		3
154	Formation of ZIF-8 membranes and crystals in a diluted aqueous solution. <i>Materials Chemistry and Physics</i> , 2013 , 139, 1003-1008	4.4	36
153	Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process. <i>Desalination</i> , 2013 , 318, 48-55	10.3	84
152	The synergetic effect of N-doped graphene and silver nanowires for high electrocatalytic performance in the oxygen reduction reaction. <i>RSC Advances</i> , 2013 , 3, 11552	3.7	41
151	High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. <i>CrystEngComm</i> , 2013 , 15, 3601	3.3	116
150	Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination. <i>Environmental Science & Environmental Science & Environme</i>	10.3	72
149	Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. <i>Microporous and Mesoporous Materials</i> , 2013 , 165, 200-204	5.3	68
148	Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis. <i>Microporous and Mesoporous Materials</i> , 2013 , 168, 15-18	5.3	46
147	Alumina hollow fiber supported ZIF-7 membranes: synthesis and characterization. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 1431-4	1.3	7
146	CO2 Selective Separation Membranes 2013 , 259-309		
145	Thin Films and Membranes with Hierarchical Porosity 2013 , 1		1
144	Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material. <i>Desalination</i> , 2012 , 284, 297-308	10.3	115
143	The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes. <i>Desalination</i> , 2012 , 287, 61-70	10.3	61
142	Evaluation of quaternary phosphonium-based polymer membranes for desalination application. <i>Desalination</i> , 2012 , 292, 119-123	10.3	14

141	Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 9287-9297	6.7	12
140	Poly(furfuryl alcohol)-assisted pyrolysis synthesis of ceramic nanoparticles for solid oxide fuel cells. <i>Materials Research Bulletin</i> , 2012 , 47, 1661-1665	5.1	
139	Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. Journal of Membrane Science, 2012 , 403-404, 41-46	9.6	136
138	Meso/micro-porosity and phase separation in TiO2/SiO2/C nanocomposites. <i>Microporous and Mesoporous Materials</i> , 2012 , 150, 25-31	5.3	11
137	Rheological behaviour of NiO/YSZ slurries for drying-free casting. <i>Powder Technology</i> , 2012 , 223, 116-12	2 3 .2	3
136	Formation of novel mesoporous TiC microspheres through a solgel and carbothermal reduction process. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 3407-3414	6	27
135	Effects of polymerization conditions on the properties of poly(furfuryl alcohol) composite membranes. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 3383-3391	2.9	11
134	A hierarchical adsorption material by incorporating mesoporous carbon into macroporous chitosan membranes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11908		26
133	Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 12173-81	3.6	14
132	Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (III) raw material. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2900-2907		49
131	Morphology and Catalytic Performance of Flake-Shaped NiO-Yttria-Stabilized Zirconia (YSZ) Particles with Nanocrystalline YSZ Grains. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 6387-6394	3.9	6
130	Growth of zeolite crystals with graphene oxide nanosheets. <i>Chemical Communications</i> , 2012 , 48, 2249-5	1 5.8	34
129	Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 15311-15319	6.7	50
128	Electrochemical characteristics and performance of anode-supported SOFCs fabricated using carbon microspheres as a pore-former. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 19045-19054	6.7	15
127	Phase inversion spinning of ultrafine hollow fiber membranes through a single orifice spinneret. Journal of Membrane Science, 2012 , 421-422, 8-14	9.6	21
126	Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. <i>Journal of Membrane Science</i> , 2012 , 423-424, 362-370	9.6	203
125	A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8013		62
124	Hydrothermal synthesis of AlPO4-5: Effect of precursor gel preparation on the morphology of crystals. <i>Progress in Natural Science: Materials International</i> , 2012 , 22, 684-692	3.6	12

123	Preparation of silicalitepolyamide composite membranes for desalination. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2012 , 7, 434-441	1.3	18
122	Modeling the Influence of Carbon Spheres on the Porosity of SOFC Anode Materials. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1261-1268	3.8	9
121	Role of ethanol in sodalite crystallization in an ethanolNa2OAl2O3BiO2H2O system. <i>CrystEngComm</i> , 2011 , 13, 4714	3.3	25
120	Eggshell membrane-templated synthesis of highly crystalline perovskite ceramics for solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1028-1032		36
119	Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. <i>Chemical Communications</i> , 2011 , 47, 2559-61	5.8	261
118	Solar evaporation enhancement using floating light-absorbing magnetic particles. <i>Energy and Environmental Science</i> , 2011 , 4, 4074	35.4	200
117	Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. <i>New Journal of Chemistry</i> , 2011 , 35, 937	3.6	37
116	Synthesis of Mesoporous Carbon-Bonded TiC/SiC Composites by Direct Carbothermal Reduction of Solfiel Derived Monolithic Precursor. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 4025-4031	3.8	17
115	Synthesis of Flake-Shaped NiOMSZ Particles for High-Porosity Anode of Solid Oxide Fuel Cell. Journal of the American Ceramic Society, 2011 , 94, 3666-3670	3.8	2
114	Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. <i>Journal of Membrane Science</i> , 2011 , 385-386, 187-193	9.6	122
113	Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether. <i>Journal of Power Sources</i> , 2011 , 196, 9246-9253	8.9	11
112	Influence of glycerol cosolvent on the synthesis of size controllable zeolite A. <i>Materials Letters</i> , 2011 , 65, 2304-2306	3.3	16
111	A 3D fibrous cathode with high interconnectivity for solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2011 , 13, 1038-1041	5.1	19
110	Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. <i>Chemical Communications</i> , 2011 , 47, 1710-2	5.8	227
109	Synthesis of silicalite-poly(furfuryl alcohol) composite membranes for oxygen enrichment from air. <i>Nanoscale Research Letters</i> , 2011 , 6, 637	5	6
108	A new empirical viscosity model for ceramic suspensions. <i>Chemical Engineering Science</i> , 2011 , 66, 2798-2	28106	33
107	Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering. <i>Soft Matter</i> , 2011 , 7, 10048	3.6	120
106	In Situ Crystallization of Macroporous Monoliths with Hollow NaP Zeolite Structure. <i>Chemistry of Materials</i> , 2010 , 22, 5271-5278	9.6	50

(2009-2010)

105	Synthesis of nanostructured silicon carbide spheres from mesoporous C-SiO2 nanocomposites. <i>Chemical Communications</i> , 2010 , 46, 303-5	5.8	30
104	Synthesis of Carbonaceous Poly(furfuryl alcohol) Membrane for Water Desalination. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 4175-4180	3.9	36
103	Recent developments in reverse osmosis desalination membranes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4551		395
102	Controlling zeolite structures and morphologies using polymer networks. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9827		35
101	Thermosetting polymer templated nanoporous sinter-active layer for low temperature solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1122-1126		17
100	Investigation of the effects of ion and water interaction on structure and chemistry of silicalite MFI type zeolite for its potential use as a seawater desalination membrane. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4675		42
99	Nanoporous niobium phosphate electrolyte membrane for low temperature fuel cell. <i>Journal of Membrane Science</i> , 2010 , 356, 147-153	9.6	9
98	Synthesis of uniform periodic mesoporous organosilica hollow spheres with large-pore size and efficient encapsulation capacity for toluene and the large biomolecule bovine serum albumin. <i>Microporous and Mesoporous Materials</i> , 2010 , 132, 543-551	5.3	53
97	One-step fabrication of ordered Pttu alloy nanotube arrays for ethanol electrooxidation. <i>Materials Letters</i> , 2010 , 64, 1169-1172	3.3	25
96	Synthesis of biodegradable polymer-mesoporous silica composite microspheres for DNA prime-protein boost vaccination. <i>European Journal of Pharmaceutical Sciences</i> , 2010 , 39, 412-20	5.1	18
95	Nafion Larbon Nanocomposite Membranes Prepared Using Hydrothermal Carbonization for Proton-Exchange-Membrane Fuel Cells. <i>Advanced Functional Materials</i> , 2010 , 20, 4394-4399	15.6	90
94	Ordered hierarchical porous platinum membranes with tailored mesostructures. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 10101-5	16.4	19
93	Combustion synthesis of ceramic nanoparticles for solid oxide fuel cells. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 593-598	1.3	2
92	Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption. <i>Journal of Colloid and Interface Science</i> , 2010 , 346, 429-35	9.3	23
91	Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. <i>Microporous and Mesoporous Materials</i> , 2010 , 127, 167-175	5.3	119
90	A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption. <i>Applied Surface Science</i> , 2010 , 256, 5334-5342	6.7	36
89	Graphitic N-Free/N-Doped Nanostructured Carbon Molecular Sieves via CVD Method and their Hydrogen Storage. <i>Advanced Materials Research</i> , 2009 , 66, 179-182	0.5	1
88	Polymer hydrogel assisted combustion synthesis of highly crystalline ceramic nanoparticles for SOFC electrolyte films. <i>Materials Chemistry and Physics</i> , 2009 , 118, 148-152	4.4	9

87	Rapid Crystallization of Silicalite Nanocrystals in a Capillary Microreactor. <i>Chemical Engineering and Technology</i> , 2009 , 32, 732-737	2	11
86	Direct electrodeposition of porous gold nanowire arrays for biosensing applications. <i>ChemPhysChem</i> , 2009 , 10, 436-41	3.2	73
85	Mesoporous carbon confined conversion of silica nanoparticles into zeolite nanocrystals. <i>Microporous and Mesoporous Materials</i> , 2009 , 117, 490-496	5.3	12
84	Synthesis and characterization of sodalitepolyimide nanocomposite membranes. <i>Microporous and Mesoporous Materials</i> , 2009 , 126, 14-19	5.3	31
83	Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities. <i>Electrochemistry Communications</i> , 2009 , 11, 190-193	5.1	48
82	Shape forming of ceramics with controllable microstructure by drying-free colloidal casting. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7070		7
81	Porous platinum nanowire arrays for direct ethanol fuel cell applications. <i>Chemical Communications</i> , 2009 , 195-7	5.8	127
80	Synthesis of mesoporous LaPO4nanostructures with controllable morphologies. <i>New Journal of Chemistry</i> , 2009 , 33, 1657	3.6	21
79	Hydrothermal synthesis of novel AlPO4-5 brooms and nano-fibers and their templated carbon structures. <i>CrystEngComm</i> , 2009 , 11, 739	3.3	13
78	Fabrication of Silicon-Based Ceramic Synthesized from Mesoporous Carbon-Silica Nanocomposites. <i>Ceramic Transactions</i> , 2009 , 71-78	0.1	
77	Synthesis of nanocrystalline sodalite with organic additives. <i>Materials Letters</i> , 2008 , 62, 4028-4030	3.3	28
76	One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. <i>Chemical Communications</i> , 2008 , 2641-3	5.8	167
75	High-flux ceramic membranes with a nanomesh of metal oxide nanofibers. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 5000-6	3.4	43
74	Direct electrodeposition of gold nanotube arrays for sensing applications. <i>Journal of Materials Chemistry</i> , 2008 , 18, 463-467		47
73	Hollow zeolite structures formed by crystallization in crosslinked polyacrylamide hydrogels. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3337		56
72	Effect of seeding on formation of silicon carbide nanostructures from mesoporous silica-carbon nanocomposites. <i>Nanotechnology</i> , 2008 , 19, 175605	3.4	15
71	Protein loaded mesoporous silica spheres as a controlled delivery platform. <i>Journal of Chemical Technology and Biotechnology</i> , 2008 , 83, 351-358	3.5	28
70	Process considerations related to the microencapsulation of plasmid DNA via ultrasonic atomization. <i>Biotechnology and Bioengineering</i> , 2008 , 101, 172-81	4.9	16

69	Cubes of zeolite A with an amorphous core. Angewandte Chemie - International Edition, 2008, 47, 8397-9	16.4	74
68	Cubes of Zeolite A with an Amorphous Core. <i>Angewandte Chemie</i> , 2008 , 120, 8525-8527	3.6	8
67	Weak-base anion exchange membranes by amination of chlorinated polypropylene with polyethyleneimine at low temperatures. <i>Journal of Membrane Science</i> , 2008 , 318, 441-444	9.6	22
66	Zeolite crystallization in crosslinked chitosan hydrogels: Crystal size control and chitosan removal. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 416-423	5.3	22
65	Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes. <i>Separation and Purification Technology</i> , 2008 , 63, 628-633	8.3	36
64	Characteristics of YSZ synthesized with a glycine-nitrate process. <i>Ceramics International</i> , 2008 , 34, 1773	-5;778	34
63	Role of Pores in the Carbothermal Reduction of CarbonBilica Nanocomposites into Silicon Carbide Nanostructures. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 636-641	3.8	50
62	Dual-Porosity Carbon Templated from Monosize Mesoporous Silica Nanoparticles. <i>Chemistry of Materials</i> , 2007 , 19, 2786-2795	9.6	49
61	Zinc/ZnO coreBhell hexagonal nanodisk dendrites and their photoluminescence. <i>Acta Materialia</i> , 2007 , 55, 5039-5044	8.4	33
60	Organic-functionalized sodalite nanocrystals and their dispersion in solvents. <i>Microporous and Mesoporous Materials</i> , 2007 , 106, 262-267	5.3	21
59	Mesoporous silica spheres from colloids. <i>Journal of Colloid and Interface Science</i> , 2007 , 308, 374-80	9.3	13
58	Tuning the morphology of bismuth ferrite nano- and microcrystals: from sheets to fibers. <i>Small</i> , 2007 , 3, 1523-8	11	45
57	Humic Acids as a Complexible Fuel for Combustion Synthesis of Ceramic Nanoparticles. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 070924065850004-???	3.8	1
56	Facile and versatile preparation of silicalite-1 hollow structures using cotton threads as templates. <i>Materials Chemistry and Physics</i> , 2007 , 103, 508-514	4.4	18
55	Preparation of silicalite-1 microtube arrays supported on cordierite honeycomb by using palm fibers as templates. <i>Studies in Surface Science and Catalysis</i> , 2007 , 408-413	1.8	4
54	Hydrothermal growth of titania nanostructures with tunable phase and shape. <i>Materials Letters</i> , 2007 , 61, 4610-4613	3.3	26
53	Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. <i>Chemistry of Materials</i> , 2007 , 19, 3271-3277	9.6	193
52	Preparation of Crystalline Mesoporous Titania Using Furfuryl Alcohol as Polymerizable Solvent. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6264-6268	3.9	23

51	Platinum tungsten oxide (PtWO3) nanoparticles: their preparation in glycol and electrocatalytic properties. <i>Journal of Experimental Nanoscience</i> , 2006 , 1, 113-123	1.9	8
50	Fabrication of porous polymer particles with high anion exchange capacity by amination reaction in aqueous medium. <i>Green Chemistry</i> , 2006 , 8, 386	10	11
49	Formation of Colloidal Hydroxy-Sodalite Nanocrystals by the Direct Transformation of Silicalite Nanocrystals. <i>Chemistry of Materials</i> , 2006 , 18, 1394-1396	9.6	48
48	Use of Poly(furfuryl alcohol) in the Fabrication of Nanostructured Carbons and Nanocomposites. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 6393-6404	3.9	102
47	Ni1⊠Cux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel. <i>Journal of Power Sources</i> , 2006 , 161, 1056-1061	8.9	42
46	Preparation of microporous carbons by using Eyclodextrin as molecular porogen. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 936-940	3.9	6
45	Incorporating organic polymer into silica walls: A novel strategy for synthesis of templated mesoporous silica with tunable pore structure. <i>Microporous and Mesoporous Materials</i> , 2005 , 82, 183-18	9 5.3	23
44	Growth of SAPO-34 in polymer hydrogels through vapor-phase transport. <i>Microporous and Mesoporous Materials</i> , 2005 , 85, 267-272	5.3	41
43	Nafion polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. <i>Journal of Membrane Science</i> , 2005 , 246, 95-101	9.6	71
42	Preparation of colloidal microporous carbon spheres from furfuryl alcohol. <i>Carbon</i> , 2005 , 43, 1709-1715	10.4	77
41	Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. <i>Materials Chemistry and Physics</i> , 2005 , 94, 322-327	4.4	26
40	Pt-coated InN nanorods for selective detection of hydrogen at room temperature. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2005 , 23, 1891		52
39	High silica zeolite Y nanocrystals by dealumination and direct synthesis. <i>Microporous and Mesoporous Materials</i> , 2004 , 74, 189-198	5.3	99
38	Nafion-polyfurfuryl alcohol nanocomposite membranes with low methanol permeation. <i>Chemical Communications</i> , 2004 , 728-9	5.8	30
37	Synthesis and Evaluation of Pure-Silica-Zeolite BEA as Low Dielectric Constant Material for Microprocessors <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2946-2949	3.9	57
36	Highly Dispersible Molecular Sieve Carbon Nanoparticles. <i>Chemistry of Materials</i> , 2004 , 16, 4205-4207	9.6	15
35	Preparation of ZnAPO-34 films on alumina substrates. <i>Journal of Materials Science</i> , 2003 , 38, 1439-1445	4.3	1
34	Synthesis, morphology control, and properties of porous metal b rganic coordination polymers. <i>Microporous and Mesoporous Materials</i> , 2003 , 58, 105-114	5.3	532

(2001-2003)

33	Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide. <i>Microporous and Mesoporous Materials</i> , 2003 , 59, 13-28	5.3	158
32	Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9928-9	16.4	157
31	Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. <i>Journal of Materials Chemistry</i> , 2003 , 13, 666-668		57
30	Nanowire Arrays Electrodeposited from Liquid Crystalline Phases. <i>Advanced Materials</i> , 2002 , 14, 61-64	24	127
29	Synthesis of pure-silica MTW powder and supported films. <i>Microporous and Mesoporous Materials</i> , 2002 , 54, 175-186	5.3	25
28	In situ synthesis of AlPO4-14, CoAPO-44 and ZnAPO-34 films on alumina substrates. <i>Journal of Materials Science</i> , 2002 , 37, 1491-1496	4.3	6
27	Synthesis and Corrosion Resistance of High-Silica Zeolite MTW, BEA, and MFI Coatings on Steel and Aluminum. <i>Journal of the Electrochemical Society</i> , 2002 , 149, B472	3.9	70
26	Cuprite Nanowires by Electrodeposition from Lyotropic Reverse Hexagonal Liquid Crystalline Phase. <i>Chemistry of Materials</i> , 2002 , 14, 876-880	9.6	99
25	Polyaniline nanowires by electropolymerization from liquid crystalline phases. <i>Journal of Materials Chemistry</i> , 2002 , 12, 388-391		189
24	Nanostructured zeolite 4A molecular sieving air separation membranes. <i>Chemical Communications</i> , 2002 , 1708-9	5.8	50
23	Homogeneous polymer deolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3640-3643		122
22	Nafion-bifunctional silica composite proton conductive membranes. <i>Journal of Materials Chemistry</i> , 2002 , 12, 834-837		123
21	Hierarchical porous structures by using zeolite nanocrystals as building blocks. <i>Microporous and Mesoporous Materials</i> , 2001 , 48, 73-78	5.3	33
20	Pure-Silica Zeolite Low-k Dielectric Thin Films. <i>Advanced Materials</i> , 2001 , 13, 746-749	24	237
19	Pure Silica Zeolite Films as Low-k Dielectrics by Spin-On of Nanoparticle Suspensions. <i>Advanced Materials</i> , 2001 , 13, 1463-1466	24	169
18	Surface modification of chitosan membranesby alkane vapor plasma. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1374-1377		30
17	High-surface-area zeolitic silica with mesoporosity. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2307-2310		23
16	Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions. <i>Chemical Communications</i> , 2001 , 1364-1365	5.8	46

15	Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. <i>Langmuir</i> , 2001 , 17, 2572-4	4	59
14	Surface Patterns by Solvent Evaporation of Colloidal Zeolite Suspension. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 676, 141		
13	Silver Nanowires Eelectrodeposited from Reverse Hexagonal Liquid Crystals. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 676, 3321		2
12	Pure Silica Zeolite Films as Low-k Dielectrics by Spin-On of Nanoparticle Suspensions 2001 , 13, 1463		1
11	Mesoporous glass films supported on Al2O3. <i>Journal of Membrane Science</i> , 2000 , 176, 75-85	9.6	9
10	Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. <i>Journal of Membrane Science</i> , 2000 , 177, 25-31	9.6	91
9	Preparation of porous ceramics by gelcasting approach. <i>Materials Letters</i> , 2000 , 45, 224-227	3.3	48
8	Colloidal suspensions of template-removed zeolite nanocrystals. Chemical Communications, 2000, 2333	-33334	53
7	Gelcasting of La0.6Sr0.4Co0.8Fe0.2O3-Ifrom oxide and carbonate powders. <i>Ceramics International</i> , 1999 , 25, 177-181	5.1	7
6	Preparation and characterization of perovskite ceramic powders by gelcasting. <i>Journal of Materials Science</i> , 1999 , 34, 1163-1167	4.3	9
5	Porous 🛮 Al2O3 ceramics prepared by gelcasting. <i>Materials Research Bulletin</i> , 1997 , 32, 1705-1712	5.1	31
4	Interlaminar Crack Growth in Fiber Reinforced Composites During Fatigue. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 1979 , 101, 34-41	1.8	9
3	TEMPO-Oxidized Cellulose Nanofibers: A Renewable Nanomaterial for Environmental and Energy Applications. <i>Advanced Materials Technologies</i> ,2001180	6.8	5
2	High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N 1 O 2 Coordination. <i>Advanced Functional Materials</i> ,2110224	15.6	10
1	Realizing High and Stable Electrocatalytic Oxygen Evolution for Iron-Based Perovskites by Co-Doping-Induced Structural and Electronic Modulation. <i>Advanced Functional Materials</i> ,2111091	15.6	4