List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7127217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebral dopamine neurotrophic factor transfection in dopamine neurons using neurotensin-polyplex nanoparticles reverses 6-hydroxydopamine-induced nigrostriatal neurodegeneration. Neural Regeneration Research, 2022, 17, 854.	3.0	2
2	Opioid deaths involving concurrent benzodiazepine use: Assessing risk factors through the analysis of prescription drug monitoring data and postmortem toxicology. Drug and Alcohol Dependence, 2021, 225, 108854.	3.2	9
3	Synaptic Zn2+ potentiates the effects of cocaine on striatal dopamine neurotransmission and behavior. Translational Psychiatry, 2021, 11, 570.	4.8	3
4	A chromosomal connectome for psychiatric and metabolic risk variants in adult dopaminergic neurons. Genome Medicine, 2020, 12, 19.	8.2	31
5	Differentially expressed gene networks, biomarkers, long noncoding RNAs, and shared responses with cocaine identified in the midbrains of human opioid abusers. Scientific Reports, 2019, 9, 1534.	3.3	33
6	Ventral striatal regulation of CREM mediates impulsive action and drug addiction vulnerability. Molecular Psychiatry, 2018, 23, 1328-1335.	7.9	21
7	Opioid Deaths: Trends, Biomarkers, and Potential Drug Interactions Revealed by Decision Tree Analyses. Frontiers in Neuroscience, 2018, 12, 728.	2.8	9
8	Regulation of human GDNF gene expression in nigral dopaminergic neurons using a new doxycycline-regulated NTS-polyplex nanoparticle system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1363-1375.	3.3	15
9	Identification of long noncoding <scp>RNA</scp> s dysregulated in the midbrain of human cocaine abusers. Journal of Neurochemistry, 2015, 135, 50-59.	3.9	38
10	Investigating the Potential Influence of Cause of Death and Cocaine Levels on the Differential Expression of Genes Associated with Cocaine Abuse. PLoS ONE, 2015, 10, e0117580.	2.5	12
11	Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson's disease. Journal of Biomedical Science, 2015, 22, 59.	7.0	54
12	The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson's Disease. PLoS ONE, 2015, 10, e0117391.	2.5	72
13	Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addiction Biology, 2014, 19, 122-131.	2.6	27
14	A Molecular Profile of Cocaine Abuse Includes the Differential Expression of Genes that Regulate Transcription, Chromatin, and Dopamine Cell Phenotype. Neuropsychopharmacology, 2014, 39, 2191-2199.	5.4	45
15	Dopamine receptor D1 and postsynaptic density gene variants associate with opiate abuse and striatal expression levels. Molecular Psychiatry, 2013, 18, 1205-1210.	7.9	37
16	Authors' Response. Journal of Forensic Sciences, 2013, 58, 562-562.	1.6	0
17	Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression. Journal of Clinical Investigation, 2013, 123, 5334-5341.	8.2	41
18	NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson's disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1052-1069.	3.3	49

#	Article	IF	CITATIONS
19	Increased Heat Shock Protein 70 Gene Expression in the Brains of Cocaineâ€Related Fatalities may be Reflective of Postdrug Survival and Intervention rather than Excited Delirium. Journal of Forensic Sciences, 2012, 57, 1519-1523.	1.6	29
20	Dysregulated Postsynaptic Density and Endocytic Zone in the Amygdala of Human Heroin and Cocaine Abusers. Biological Psychiatry, 2011, 69, 245-252.	1.3	32
21	Pharmacology of β-(3,4-dimethoxyphenyl)ethyl amine: lack of peripheral and central antidopaminergic properties. Journal of Pharmacy and Pharmacology, 2011, 30, 450-451.	2.4	0
22	The transcription factor NURR1 exerts concentration-dependent effects on target genes mediating distinct biological processes. Frontiers in Neuroscience, 2011, 5, 135.	2.8	38
23	Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. Journal of Neurochemistry, 2011, 116, 459-466.	3.9	152
24	Association of a Polyadenylation Polymorphism in the Serotonin Transporter and Panic Disorder. Biological Psychiatry, 2010, 67, 331-338.	1.3	52
25	Expression of Transcripts for Myelin Related Genes in Postmortem Brain from Cocaine Abusers. Neurochemical Research, 2009, 34, 46-54.	3.3	32
26	D1 receptor regulation of preprotachykinin-A gene by extracellular signal-regulated kinase pathway in striatal cultures. NeuroReport, 2008, 19, 187-191.	1.2	3
27	Valproate robustly increases Sp transcription factor-mediated expression of the dopamine transporter gene within dopamine cells. European Journal of Neuroscience, 2007, 25, 1982-1986.	2.6	30
28	Biophysical characteristics of neurotensin polyplex for in vitro and in vivo gene transfection. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1009-1020.	2.4	25
29	Regulation of the preprotachykinin-I gene promoter through a protein kinase A-dependent, cyclic AMP response element-binding protein-independent mechanism. Journal of Neurochemistry, 2006, 97, 255-264.	3.9	6
30	Distinctive Profiles of Gene Expression in the Human Nucleus Accumbens Associated with Cocaine and Heroin Abuse. Neuropsychopharmacology, 2006, 31, 2304-2312.	5.4	123
31	Brain-Specific Regulator of G-Protein Signaling 9-2 Selectively Interacts with Â-Actinin-2 to Regulate Calcium-Dependent Inactivation of NMDA Receptors. Journal of Neuroscience, 2006, 26, 2522-2530.	3.6	27
32	Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Molecular Therapy, 2006, 14, 857-865.	8.2	68
33	Gene Expression Profiling in the Brains of Human Cocaine Abusers. Addiction Biology, 2005, 10, 119-126.	2.6	52
34	Dopamine neurons express multiple isoforms of the nuclear receptor nurr1 with diminished transcriptional activity. Journal of Neurochemistry, 2005, 95, 1342-1350.	3.9	26
35	The dopamine transporter: role in neurotoxicity and human disease. Toxicology and Applied Pharmacology, 2005, 204, 355-360.	2.8	104
36	Sp1 and Sp3 activate transcription of the human dopamine transporter gene. Journal of Neurochemistry, 2005, 93, 474-482.	3.9	55

#	Article	IF	CITATIONS
37	Preferential expression of an AAV-2 construct in NOS-positive interneurons following intrastriatal injection. Molecular Brain Research, 2005, 141, 74-82.	2.3	4
38	Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. Journal of Neurochemistry, 2004, 88, 1211-1219.	3.9	180
39	Transcription factors specifying dopamine phenotype are decreased in cocaine users. NeuroReport, 2004, 15, 401-404.	1.2	28
40	Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6382-6385.	7.1	97
41	Real-Time Analysis of Preprotachykinin Promoter Activity in Single Cortical Neurons. Journal of Neurochemistry, 2002, 75, 882-885.	3.9	17
42	The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. European Neuropsychopharmacology, 2001, 11, 449-455.	0.7	131
43	Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. Journal of Neurochemistry, 2001, 76, 1565-1572.	3.9	189
44	RGS mRNA Expression in Rat Striatum. Journal of Neurochemistry, 2001, 72, 1529-1533.	3.9	79
45	The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. Journal of Neurochemistry, 2001, 79, 1033-1038.	3.9	153
46	Stress-induced c-fos expression in the rat locus coeruleus is dependent on neurokinin 1 receptor activation. Neuroscience, 1999, 94, 1183-1188.	2.3	61
47	Characterization of the 5′-flanking region of the human dopamine transporter gene. Molecular Brain Research, 1999, 74, 167-174.	2.3	101
48	Tachykinin NK1 receptor antagonists enhance stress-induced c-fos in rat locus coeruleus. European Journal of Pharmacology, 1998, 348, 155-160.	3.5	20
49	Regulators of G Protein Signaling: Rapid Changes in mRNA Abundance in Response to Amphetamine. Journal of Neurochemistry, 1998, 70, 2216-2219.	3.9	85
50	Ageâ€related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology, 1997, 48, 969-977.	1.1	120
51	Serotonin, dopamine and norepinephrine transporter mRNAs: heterogeneity of distribution and response to `binge' cocaine administration. Molecular Brain Research, 1997, 49, 95-102.	2.3	43
52	Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with parkinson's, alzheimer's with parkinsonism, and alzheimer's disease. Movement Disorders, 1997, 12, 885-897.	3.9	98
53	Neurokinin receptor mRNA localization in human midbrain dopamine neurons. Journal of Comparative Neurology, 1997, 382, 394-400.	1.6	45
54	Neurokinin receptor mRNA localization in human midbrain dopamine neurons. Journal of Comparative Neurology, 1997, 382, 394-400.	1.6	1

#	Article	IF	CITATIONS
55	Neurokinin receptor mRNA localization in human midbrain dopamine neurons. Journal of Comparative Neurology, 1997, 382, 394-400.	1.6	10
56	Dopamine transporter binding in rat striatum and nucleus accumbens is unaltered following chronic changes in dopamine levels. Neuroscience Letters, 1996, 217, 55-57.	2.1	26
57	Noradrenaline transport and transporter mRNA of rat chromaffin cells are controlled by dexamethasone and nerve growth factor Journal of Physiology, 1996, 494, 67-75.	2.9	33
58	Neurokinin-3 receptors modulate dopamine cell function and alter the effects of 6-hydroxydopamine. Brain Research, 1995, 695, 19-24.	2.2	38
59	Neurokinin receptor gene expression in substantia nigra: localization, regulation, and potential physiological significance. Canadian Journal of Physiology and Pharmacology, 1995, 73, 866-870.	1.4	34
60	Quantitation, cellular localization and regulation of neurokinin receptor gene expression within the rat substantia nigra. Neuroscience, 1995, 64, 419-425.	2.3	65
61	Low dopamine transporter mRNA levels in midbrain regions containing calbindin. NeuroReport, 1994, 5, 1641-1644.	1.2	36
62	GABA transporter mRNA: in vitro expression and quantitation in neonatal rat and postmortem human brain. Neurochemistry International, 1993, 22, 263-270.	3.8	16
63	Neurotrophic effects of substance P on hippocampal neurons in vitro. Neuroscience Letters, 1993, 164, 141-144.	2.1	28
64	Substance P gene expression in sympathetic neurons is regulated by neuron/support cell interaction. Developmental Brain Research, 1993, 73, 35-40.	1.7	2
65	Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7095-7099.	7.1	165
66	Preprotachykinin gene expression in the human basal ganglia: characterization of mRNAs and pre-mRNAs produced by alternate RNA splicing. Molecular Brain Research, 1992, 12, 225-231.	2.3	34
67	Non-specific binding of normal human IgG, including F(ab′)2 and Fc fragments, to embryonic rat brain neurons and human cortex synaptosomes. Journal of Neuroimmunology, 1992, 38, 45-52.	2.3	3
68	Quantitation of Rat Dopamine Transporter mRNA: Effects of Cocaine Treatment and Withdrawal. Journal of Neurochemistry, 1992, 59, 1179-1182.	3.9	60
69	Release of cholecystokinin from rat midbrain slices and modulatory effect of D2 DA receptor stimulation. Brain Research, 1991, 555, 281-287.	2.2	26
70	Preprotachykinin Gene Expression in the Forebrain: Regulation by Dopamine. Annals of the New York Academy of Sciences, 1991, 632, 31-37.	3.8	13
71	Splicing Pattern of Gs? mRNA in Human and Rat Brain. Journal of Neurochemistry, 1991, 57, 1019-1023.	3.9	16
72	Effect of Aging on Tyrosine Hydroxylase Protein Content and the Relative Number of Dopamine Nerve Terminals in Human Caudate. Journal of Neurochemistry, 1991, 56, 1191-1200.	3.9	79

#	Article	IF	CITATIONS
73	Expression of a Human Cocaine-Sensitive Dopamine Transporter in Xenopus laevis Oocytes. Journal of Neurochemistry, 1990, 54, 706-708.	3.9	24
74	Developmental Profile of Striatal Preprotachykinin Gene Expression. Journal of Neurochemistry, 1990, 55, 764-768.	3.9	12
75	Tachykinin gene expression in rat limbic nuclei: modulation by dopamine antagonists. Journal of Pharmacology and Experimental Therapeutics, 1990, 255, 388-92.	2.5	25
76	Medial Forebrain Bundle Stimulation or D-2 Dopamine Receptor Activation Increases Preproenkephalin mRNA in Rat Striatum. Journal of Neurochemistry, 1989, 52, 859-862.	3.9	34
77	Striatal tachykinin biosynthesis: regulation of mRNA and peptide levels by dopamine agonists and antagonists. Molecular Brain Research, 1987, 3, 31-37.	2.3	108
78	Activation of forebrain dopamine systems by phencyclidine and footshock stress: evidence for distinct mechanisms. Psychopharmacology, 1987, 93, 133-135.	3.1	13
79	Mild footshock stress dissociates substance P from substance K and dynorphin from Met- and Leu-enkephalin. Brain Research, 1986, 381, 393-396.	2.2	50
80	Selective activation of mesolimbic and mesocortical dopamine metabolism in rat brain by infusion of a stable substance P analogue into the ventral tegmental area. Brain Research, 1986, 363, 145-147.	2.2	71
81	The localization and characterization of substance P and substance K in striatonigral neurons. Brain Research, 1986, 371, 152-154.	2.2	69
82	Melanin-concentrating hormone: unique peptide neuronal system in the rat brain and pituitary gland Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 1528-1531.	7.1	99
83	Substance K and substance P differentially modulate mesolimbic and mesocortical systems. Peptides, 1985, 6, 113-122.	2.4	102
84	Comparison of the substance P- and dynorphin-containing projections to the substantia nigra: a radioimmunocytochemical and biochemical study. Brain Research, 1985, 361, 185-192.	2.2	42
85	Influence of acute, subchronic and chronic treatment with neuroleptic (haloperidol) on enkephalins and their precursors in the striatum of rat brain. Neuropeptides, 1985, 5, 567-570.	2.2	35
86	Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience, 1984, 12, 1-16.	2.3	302
87	Primate model of Parkinson's disease: alterations in multiple opioid systems in the basal ganglia. Brain Research, 1984, 322, 356-360.	2.2	48
88	Changes in substance P concentrations after protein synthesis inhibition provide an index of substance P utilization. Brain Research, 1984, 301, 184-186.	2.2	13
89	Role of endogenous substance P in stress-induced activation of mesocortical dopamine neurones. Nature, 1983, 306, 791-792.	27.8	153
90	Pharmacology of dopamine neurons innervating the prefrontal, cingulate and piriform cortices. European Journal of Pharmacology, 1983, 92, 119-125.	3.5	88