
Paul C Millett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7127155/publications.pdf Version: 2024-02-01

DALLI C MILLETT

#	Article	IF	CITATIONS
1	An object-oriented finite element framework for multiphysics phase field simulations. Computational Materials Science, 2012, 51, 20-29.	3.0	217
2	Phase field modeling of void nucleation and growth in irradiated metals. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 064002.	2.0	89
3	Phase-field simulation of irradiated metals. Computational Materials Science, 2011, 50, 949-959.	3.0	83
4	Phase-field simulation of intergranular bubble growth and percolation in bicrystals. Journal of Nuclear Materials, 2012, 425, 130-135.	2.7	42
5	Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction. Computational Materials Science, 2012, 56, 161-165.	3.0	38
6	Demonstrating the Temperature Gradient Impact on Grain Growth in UO2Using the Phase Field Method. Materials Research Letters, 2014, 2, 23-28.	8.7	38
7	Phase-field modeling of non-solvent induced phase separation (NIPS) for PES/NMP/Water with comparison to experiments. Journal of Membrane Science, 2021, 619, 118779.	8.2	28
8	Atomistic simulations of void migration under thermal gradient in UO2. Acta Materialia, 2010, 58, 330-339.	7.9	24
9	Grain boundary percolation modeling of fission gas release in oxide fuels. Journal of Nuclear Materials, 2012, 424, 176-182.	2.7	23
10	Phase-field simulations of pore migration and morphology change in thermal gradients. Journal of Nuclear Materials, 2017, 490, 299-304.	2.7	20
11	Mesoscopic simulations of thermally-induced phase separation in PVDF/DPC solutions. Journal of Membrane Science, 2019, 577, 266-273.	8.2	19
12	Numerical Simulations of Directed Self-Assembly in Diblock Copolymer Films using Zone Annealing and Pattern Templating. Scientific Reports, 2017, 7, 5250.	3.3	14
13	Electric-field induced alignment of nanoparticle-coated channels in thin-film polymer membranes. Journal of Chemical Physics, 2014, 140, 144903.	3.0	12
14	Numerical simulations of bijel morphology in thin films with complete surface wetting. Journal of Chemical Physics, 2015, 143, 154701.	3.0	12
15	Mesoscale modeling of intergranular bubble percolation in nuclear fuels. Journal of Applied Physics, 2012, 111, .	2.5	9
16	Tuning thin-film bijels with applied external electric fields. Soft Matter, 2018, 14, 4344-4354.	2.7	7
17	Two-dimensional bicontinuous structures from symmetric surface-directed spinodal decomposition in thin films. Physical Review E, 2018, 98, 022601.	2.1	7
18	Consideration of grain size distribution in the diffusion of fission gas to grain boundaries. Journal of Nuclear Materials, 2013, 440, 435-439.	2.7	6

PAUL C MILLETT

#	Article	IF	CITATIONS
19	Diverse morphologies in thin-film bijels by varying film thickness and composition. Soft Matter, 2017, 13, 4214-4223.	2.7	6
20	Directed Self-Assembly in Diblock Copolymer Thin Films for Uniform Hemisphere Pattern Formation. Macromolecules, 2019, 52, 9495-9503.	4.8	6
21	Time-dependent Ginzburg-Landau model for nonfrustrated linear <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi><mml:mi>B</mml:mi> terpolymers. Physical Review E, 2015, 92, 022602.</mml:mrow></mml:math 	<raml:mi></raml:mi>	C4/mml:mi>
22	Mesoscopic simulations of coarsening kinetics within block-copolymer/homopolymer thin films. Computational Materials Science, 2016, 125, 20-27.	3.0	3
23	Numerical study of the phase behavior of rod-like colloidal particles with attractive tips. AIP Advances, 2021, 11, 025030.	1.3	3
24	Nanoscale investigation and control of photothermal action of gold nanostructure-coated surfaces. Journal of Materials Science, 2021, 56, 10249-10263.	3.7	3
25	Phase-field simulations of the impact of bimodal pore size distributions on solid-state densification. Journal of Nuclear Materials, 2017, 491, 48-54.	2.7	1