
Li-Hua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7126658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase Conversion Accelerating "Znâ€Escape―Effect in ZnSeâ€CFs Heterostructure for High Performance Sodium″on Half/Full Batteries. Small, 2022, 18, 2105169.	10.0	7
2	A nucleation-tuned mechanism to prepare centre-crossed zeolite lamellas by the rotating/static switch crystallization strategy. Inorganic Chemistry Frontiers, 2022, 9, 889-901.	6.0	3
3	The chain-mail Co@C electrocatalyst accelerating one-step solid-phase redox for advanced Li–Se batteries. Journal of Materials Chemistry A, 2022, 10, 8059-8067.	10.3	11
4	Unprecedented strong and reversible atomic orbital hybridization enables a highly stable Li–S battery. National Science Review, 2022, 9, .	9.5	15
5	Construction of Ti-containing zeolite with highly enhanced catalytic activity by active species surface implanting strategy. Catalysis Today, 2022, 405-406, 285-298.	4.4	3
6	Vacancy defect engineering in semiconductors for solar lightâ€driven environmental remediation and sustainable energy production. , 2022, 1, 213-255.		46
7	Dual catalysis-adsorption function modified separator towards high-performance Li-Se battery. Applied Surface Science, 2022, 599, 153932.	6.1	7
8	Boosting Highly Active Exposed Mo Atoms by Fine-Tuning S-Vacancies of MoS ₂ -Based Materials for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 30746-30759.	8.0	14
9	Emerging semiconductors and metal-organic-compounds-related photocatalysts for sustainable hydrogen peroxide production. Matter, 2022, 5, 2119-2167.	10.0	37
10	Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Journal of Colloid and Interface Science, 2021, 582, 60-69.	9.4	34
11	The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2021, 15, 269-278.	4.4	9
12	Growing ordered CuO nanorods on 2D Cu/g-C3N4 nanosheets as stable freestanding anode for outstanding lithium storage. Chemical Engineering Journal, 2021, 407, 126941.	12.7	33
13	Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for high-performance sodium-ion battery. Journal of Energy Chemistry, 2021, 59, 38-46.	12.9	25
14	Synergistic zinc doping and defect engineering toward MoS ₂ nanosheet arrays for highly efficient electrocatalytic hydrogen evolution. Dalton Transactions, 2021, 50, 5770-5775.	3.3	11
15	Embedding tin disulfide nanoparticles in two-dimensional porous carbon nanosheet interlayers for fast-charging lithium-sulfur batteries. Science China Materials, 2021, 64, 2697-2709.	6.3	16
16	Stable 2D Alternating Cation Perovskite Solar Cells with Power Conversion Efficiency >19% via Solvent Engineering. Solar Rrl, 2021, 5, 2100286.	5.8	45
17	Optimizing inner voids in yolk-shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries. Chemical Engineering Journal, 2021, 417, 129241.	12.7	42
18	PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 420, 129695.	12.7	88

#	Article	IF	CITATIONS
19	Tris(trimethylsilyl) borate as electrolyte additive alleviating cathode electrolyte interphase for enhanced lithium-selenium battery. Electrochimica Acta, 2021, 393, 139042.	5.2	12
20	Light-assisted preparation of heterostructured g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen performance. Catalysis Today, 2020, 355, 932-936.	4.4	33
21	Hollow nitrogen-doped carbon/sulfur@MnO2 nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery. Chemical Engineering Journal, 2020, 381, 122746.	12.7	66
22	A flexible, hierarchically porous PANI/MnO ₂ network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 2741-2751.	10.3	50
23	Hierarchy in materials for maximized efficiency. National Science Review, 2020, 7, 1626-1630.	9.5	47
24	Micron‧ized Zeolite Beta Single Crystals Featuring Intracrystal Interconnected Ordered Macroâ€Mesoâ€Microporosity Displaying Superior Catalytic Performance. Angewandte Chemie, 2020, 132, 19750-19759.	2.0	13
25	Hierarchical Zeolite Single-Crystal Reactor for Excellent Catalytic Efficiency. Matter, 2020, 3, 1226-1245.	10.0	66
26	Crystalline Porous Organic Salts: From Micropore to Hierarchical Pores. Advanced Materials, 2020, 32, e2003270.	21.0	52
27	Hierarchically Structured Zeolites: From Design to Application. Chemical Reviews, 2020, 120, 11194-11294.	47.7	328
28	Enhanced stability of highly-dispersed copper catalyst supported by hierarchically porous carbon for long term selective hydrogenation. Chinese Journal of Catalysis, 2020, 41, 1081-1090.	14.0	18
29	Micron‧ized Zeolite Beta Single Crystals Featuring Intracrystal Interconnected Ordered Macroâ€Mesoâ€Microporosity Displaying Superior Catalytic Performance. Angewandte Chemie - International Edition, 2020, 59, 19582-19591.	13.8	61
30	cAMP sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer. Chemical Communications, 2020, 56, 3425-3428.	4.1	4
31	Bronze TiO2 as a cathode host for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 48, 259-266.	12.9	61
32	In-Situ Growing Mesoporous CuO/O-Doped g-C ₃ N ₄ Nanospheres for Highly Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2019, 11, 32957-32968.	8.0	78
33	Efficient etching of oxygen-incorporated molybdenum disulfide nanosheet arrays for excellent electrocatalytic hydrogen evolution. Applied Surface Science, 2019, 491, 245-255.	6.1	22
34	Molybdenum disulfide quantum dots directing zinc indium sulfide heterostructures for enhanced visible light hydrogen production. Journal of Colloid and Interface Science, 2019, 551, 111-118.	9.4	35
35	Acid-responsive H ₂ -releasing Fe nanoparticles for safe and effective cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2759-2765.	5.8	45
36	MOF-derived nitrogen-doped core–shell hierarchical porous carbon confining selenium for advanced lithium–selenium batteries. Nanoscale, 2019, 11, 6970-6981.	5.6	83

#	Article	IF	CITATIONS
37	Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2018, 12, 43-49.	4.4	7
38	Oxygen self-doped g-C ₃ N ₄ with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale, 2018, 10, 4515-4522.	5.6	247
39	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na–Se batteries. Journal of Materials Chemistry A, 2018, 6, 22790-22797.	10.3	62
40	Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR. Chemical Science, 2018, 9, 8184-8193.	7.4	38
41	A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5, 2829-2835.	6.0	18
42	Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Advances, 2018, 8, 28625-28631.	3.6	32
43	Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li–S batteries. Nanoscale, 2018, 10, 11861-11868.	5.6	32
44	3D Ferroconcreteâ€Like Aminated Carbon Nanotubes Network Anchoring Sulfur for Advanced Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1801066.	19.5	115
45	Hierarchy Design in Metal Oxides as Anodes for Advanced Lithiumâ€lon Batteries. Small Methods, 2018, 2, 1800171.	8.6	69
46	Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 2017, 46, 481-558.	38.1	1,030
47	Physical and chemical dual-confinement of polysulfides within hierarchically meso-microporous nitrogen-doped carbon nanocages for advanced Li–S batteries. RSC Advances, 2017, 7, 42627-42633.	3.6	11
48	Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite. ACS Applied Materials & amp; Interfaces, 2017, 9, 43665-43673.	8.0	83
49	Manganese dioxide nanosheet functionalized sulfur@PEDOT core–shell nanospheres for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 9403-9412.	10.3	112
50	Hierarchically porous materials: Synthesis strategies and emerging applications. Frontiers of Chemical Science and Engineering, 2016, 10, 301-347.	4.4	73
51	Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45, 3479-3563.	38.1	1,134
52	Phases Hybriding and Hierarchical Structuring of Mesoporous TiO ₂ Nanowire Bundles for Highâ€Rate and Highâ€Capacity Lithium Batteries. Advanced Science, 2015, 2, 1500070.	11.2	39
53	Hierarchical nanosheet-constructed yolk–shell TiO ₂ porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7, 12979-12989.	5.6	51
54	Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy, 2015, 12, 833-844.	16.0	96

#	Article	IF	CITATIONS
55	Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9699.	10.3	124
56	Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 14099.	10.3	52
57	A comparative study of hierarchically micro-meso-macroporous solid-acid catalysts constructed by zeolites nanocrystals synthesized via a quasi-solid-state crystallization process. Microporous and Mesoporous Materials, 2013, 182, 122-135.	4.4	18
58	Hierarchically structured zeolites: synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22, 17381.	6.7	372
59	Self-generated hierarchically porous titania with high surface area: Photocatalytic activity enhancement by macrochannel structure. Journal of Colloid and Interface Science, 2012, 368, 128-138.	9.4	37
60	Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. Journal of Colloid and Interface Science, 2012, 377, 368-374.	9.4	39
61	Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152, 110-121.	4.4	10
62	Direct Observation of Macrostructure Formation of Hierarchically Structured Mesoâ 'Macroporous Aluminosilicates with 3D Interconnectivity by Optical Microscope. Langmuir, 2011, 27, 3030-3043.	3.5	29
63	Multimodal Zeoliteâ€Betaâ€Based Catalysts with a Hierarchical, Threeâ€level Pore Structure. ChemSusChem, 2011, 4, 1452-1456.	6.8	38
64	Highly Stable and Reusable Multimodal Zeolite TSâ€1 Based Catalysts with Hierarchically Interconnected Threeâ€Level Micro–Meso–Macroporous Structure. Angewandte Chemie - International Edition, 2011, 50, 11156-11161.	13.8	189
65	Wellâ€Organized Zeolite Nanocrystal Aggregates with Interconnected Hierarchically Micro–Meso–Macropore Systems Showing Enhanced Catalytic Performance. Chemistry - A European Journal, 2011, 17, 14987-14995.	3.3	78
66	Synergistic Regulation of S-Vacancy of MoS2-Based Materials for Highly Efficient Electrocatalytic Hydrogen Evolution. Frontiers in Chemistry, 0, 10, .	3.6	5