Raj Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7126590/publications.pdf

Version: 2024-02-01

687363 713466 33 478 13 21 citations h-index g-index papers 33 33 33 492 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative study of poly(acrylate-co-maleimide) copolymers and poly(\hat{l} ±-olefins-co-maleimide) copolymers of hindered phenolic Schiff base amine for lubricant applications. Journal of Polymer Research, 2022, 29, 1.	2.4	1
2	Synthesis and characterization of novel ethyl levulinate coupled N-phenyl-p-phenylenediamine multifunctional additive: oxidation stability and lubricity improver in biodiesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 6236-6248.	2.3	2
3	Study of alkyl acrylate-co-maleic anhydride-based novel amide copolymers as multifunctional lubricant additives. Polymer Bulletin, 2021, 78, 2085-2102.	3.3	6
4	Methyl oleate derived multifunctional additive for polyol based lubricants. Wear, 2021, 466-467, 203550.	3.1	10
5	Study of azomethine functionalized cellulose with salicylaldehyde as novel demetallization agent for metalloporphyrins in crude oil. Cellulose, 2021, 28, 2635-2648.	4.9	6
6	A comprehensive review on the applications of functionalized chitosan in petroleum industry. Carbohydrate Polymers, 2021, 266, 118125.	10.2	43
7	Study on alkylated Schiff base of a triazole with 3, 5-di-tert-butyl-4-hydroxybenzaldehyde as a novel multifunctional lubricant additive. Fuel, 2021, 302, 121158.	6.4	5
8	Efficiency of Dodecenylsuccinic Amide of nâ€Phenylâ€pâ€Phenylenediammine as Novel Multifunctional Lubricant Additive for Deposit Control and Lubricity. Journal of Surfactants and Detergents, 2021, 24, 173-184.	2.1	4
9	Study on Biodegradable Poly(α-Olefins–co–α-Pinene) Architectures as Pour Point Depressant and Viscosity Index Improver Additive for Lubricating Oils. Journal of Polymers and the Environment, 2020, 28, 3019-3027.	5.0	9
10	A review on lignin utilization in petroleum exploration, petroleum products formulation, bio-fuel production, and oil spill clean-up. Biomass Conversion and Biorefinery, 2020, , 1.	4.6	12
11	Viscosity Modification of Heavy Crude Oil by Using a Chitosan-Based Cationic Surfactant. Energy & Samp; Fuels, 2020, 34, 4474-4483.	5.1	33
12	High CO2 absorption of O-carboxymethylchitosan synthesised from chitosan. Environmental Chemistry Letters, 2018, 16, 1025-1031.	16.2	18
13	Development of a Biodegradable/Ecofriendly Turbine Lubricant from a Novel Polyalkylene Glycol Ester. Waste and Biomass Valorization, 2018, 9, 1121-1128.	3.4	1
14	Synthesis of a novel efficient antioxidant for use in lubes and biodiesel. Petroleum Chemistry, 2017, 57, 100-105.	1.4	4
15	Phosphazene-based novel organo-inorganic hybrid salt: synthesis, characterization and performance evaluation as multifunctional additive in polyol. RSC Advances, 2017, 7, 13390-13397.	3.6	12
16	Recent Progress in the Preparation of Eco-friendly Lubricant and Fuel Additives through Organic Transformations of Biomaterials. Mini-Reviews in Organic Chemistry, 2017, 14, 44-55.	1.3	18
17	Evaluation of a Novel Hindered Phenolic Triazine Schiff Base as Multifunctional Additive in Biolube and Biodiesel. Waste and Biomass Valorization, 2016, 7, 1437-1445.	3.4	8
18	Synthesis of succinimide based novel additives for viscosity reduction of bituminous binder. Construction and Building Materials, 2016, 126, 566-572.	7.2	3

#	Article	IF	CITATIONS
19	Poultry Chicken Feather Derived Biodegradable Multifunctional Additives for Lubricating Formulations. ACS Sustainable Chemistry and Engineering, 2016, 4, 999-1005.	6.7	27
20	Investigation on the Potential of Dextrose, Sucrose and Cellulose Dodecenylsuccinate Esters as Lubricity Additive. Waste and Biomass Valorization, 2015, 6, 63-72.	3.4	6
21	Study of cystine schiff base esters as new environmentally benign multifunctional biolubricant additives. Journal of Industrial and Engineering Chemistry, 2015, 26, 149-156.	5.8	25
22	An Investigation on the Lubricity Characteristics of Polyethylene Glycol Blends with Cellulose Palmitates. Waste and Biomass Valorization, 2015, 6, 1067-1076.	3.4	5
23	Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property. Journal of Industrial and Engineering Chemistry, 2015, 24, 14-19.	5.8	28
24	Derivatizing <scp>l</scp> -histidine to develop a novel additive for a polyol-based biolubricant. New Journal of Chemistry, 2015, 39, 5354-5359.	2.8	20
25	Development of new ecofriendly detergent/dispersant/antioxidant/antiwear additives from <scp>l</scp> -histidine for biolubricant applications. RSC Advances, 2015, 5, 37649-37656.	3.6	16
26	Use of an Acylated Chitosan Schiff Base as an Ecofriendly Multifunctional Biolubricant Additive. Industrial & Engineering Chemistry Research, 2014, 53, 18370-18379.	3.7	44
27	Abilities of Some Compounds to Stabilize Mahwa Oil from High Temperature Oxidative Degradation for Biolubricant Applications. Waste and Biomass Valorization, 2014, 5, 847-855.	3.4	5
28	Study of Novel Ecofriendly Multifunctional Lube Additives Based on Pentaerythritol Phenolic Ester. ACS Sustainable Chemistry and Engineering, 2014, 2, 1959-1967.	6.7	27
29	Evaluation of Cellulose Laurate Esters for Application as Green Biolubricant Additives. Industrial & Engineering Chemistry Research, 2014, 53, 10276-10284.	3.7	27
30	Methylcellulose synthesis from corn cobs. Journal of Thermal Analysis and Calorimetry, 2013, 114, 809-819.	3.6	8
31	Optimization of Reaction Conditions for Preparing Carboxymethyl Cellulose from Corn Cobic Agricultural Waste. Waste and Biomass Valorization, 2013, 4, 129-137.	3.4	42
32	A Solution Study of the Interaction of the Cu(II) Ions with HisGlyGlyTrp Tetrapeptide and Its Evaluation as Superoxide Dismutase Mimetic Complex. Protein and Peptide Letters, 2011, 18, 1280-1289.	0.9	2
33	Amide polymers based on Nâ€phenylâ€pâ€phenylenediamine with <scp>α</scp> â€olefinsâ€coâ€maleic anhydric multifunctional additives for lubricant application. Polymers for Advanced Technologies, 0, , .	de as	1