Stefan Reimann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7126394/publications.pdf

Version: 2024-02-01

126 papers 7,062 citations

71102 41 h-index 76900 74 g-index

192 all docs 192 docs citations

192 times ranked

7204 citing authors

#	Article	IF	CITATIONS
1	Atmospheric molecular hydrogen (H ₂): observations at the high-altitude site Jungfraujoch, Switzerland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 64.	1.6	16
2	Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 30967.	1.6	43
3	Swiss halocarbon emissions for 2019 to 2020 assessed from regional atmospheric observations. Atmospheric Chemistry and Physics, 2022, 22, 2447-2466.	4.9	11
4	Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Clobal trends and European emissions of tetrafluoromethane	7.1	16
5	(CF ₄), hexafluoroethane (C ₂ F ₆) and octafluoropropane (C&:lt:sub&:gt:3&:lt:/sub&:gt:F&:lt:sub&:gt:8&:lt:/sub&:gt:). Atmospheric	4.9	12
6	Chemistry and Physics, 2021, 21, 2149-2164. A decline in emissions of CFC-11 and related chemicals from eastern China. Nature, 2021, 590, 433-437.	27.8	61
7	Growing Atmospheric Emissions of Sulfuryl Fluoride. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034327.	3.3	10
8	Evidence of a recent decline in UKÂemissions of hydrofluorocarbons determined by the InTEM inverse model and atmospheric measurements. Atmospheric Chemistry and Physics, 2021, 21, 12739-12755.	4.9	17
9	Automated fragment formula annotation for electron ionisation, high resolution mass spectrometry: application to atmospheric measurements of halocarbons. Journal of Cheminformatics, 2021, 13, 78.	6.1	4
10	Atmospheric CH3CCl3 observations in China: Historical trends and implications. Atmospheric Research, 2020, 231, 104658.	4.1	4
11	Renewed and emerging concerns over the production and emission of ozone-depleting substances. Nature Reviews Earth & Environment, 2020, 1, 251-263.	29.7	32
12	Long-term Observations of Atmospheric Halogenated Organic Trace Gases. Chimia, 2020, 74, 136.	0.6	2
13	The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF ₆). Atmospheric Chemistry and Physics, 2020, 20, 7271-7290.	4.9	63
14	The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 2020, 13, 3571-3605.	3.6	539
15	Changes in HCFC Emissions in China During 2011–2017. Geophysical Research Letters, 2019, 46, 10034-10042.	4.0	16
16	China's Hydrofluorocarbon Emissions for 2011–2017 Inferred from Atmospheric Measurements. Environmental Science and Technology Letters, 2019, 6, 479-486.	8.7	24
17	Perfluorocyclobutane (PFC-318,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 Td (<i>c&am in the global atmosphere. Atmospheric Chemistry and Physics, 2019, 19, 10335-10359.</i>	np;lt;/i& 4.9	ıp;gt;-C&l 22
18	Recent Trends in Stratospheric Chlorine From Very Shortâ€Lived Substances. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2318-2335.	3.3	34

#	Article	IF	Citations
19	Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 742 Td (<i&< td=""><td>Raṃp;gt;c</td><td></td></i&<>	Raṃp;gt;c	
	in the atmosphere. Atmospheric Chemistry and Physics, 2019, 19, 3481-3492.		
20	Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature, 2019, 569, 546-550.	27.8	148
21	Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nature Geoscience, 2018, 11, 178-184.	12.9	56
22	Abundance and sources of atmospheric halocarbons in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2018, 18, 4069-4092.	4.9	12
23	Low number concentration of ice nucleating particles in an aged smoke plume. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1991-1994.	2.7	2
24	Recent increases in the atmospheric growth rate and emissions of HFC-23 (CHF& t;sub>3& t;/sub>) and the link to HCFC-22 (CHClF& t;sub>2& t;/sub>) production. Atmospheric Chemistry and Physics, 2018, 18, 4153-4169. Atmospheric histories and emissions of chlororiuorocarbons CFC-13	4.9	27
25	(CClF ₃), ΣCFC-114 (C ₂ Cl _{5_{5_{ClF_{5_{0.}}}}}	o;g t;\$ &am	p; t øsub&an
26	Current sources of carbon tetrachloride (CCl ₄) in our atmosphere. Environmental Research Letters, 2018, 13, 024004.	5. 2	47
27	Continued Emissions of the Ozoneâ€Depleting Substance Carbon Tetrachloride From Eastern Asia. Geophysical Research Letters, 2018, 45, 11423-11430.	4.0	37
28	Observing the atmospheric evolution of ozone-depleting substances. Comptes Rendus - Geoscience, 2018, 350, 384-392.	1.2	10
29	Toward resolving the budget discrepancy of ozone-depleting carbon tetrachlorideÂ(CCl ₄): an analysis of top-down emissions from China. Atmospheric Chemistry and Physics, 2018, 18, 11729-11738.	4.9	16
30	Dynamic–gravimetric preparation of metrologically traceable primary calibration standards for halogenated greenhouse gases. Atmospheric Measurement Techniques, 2018, 11, 3351-3372.	3.1	12
31	History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data, 2018, 10, 985-1018.	9.9	179
32	Retrieval of HCFC-142b (CH 3 CCIF 2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186, 96-105.	2.3	10
33	Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China. Atmospheric Environment, 2017, 160, 55-69.	4.1	34
34	European emissions of the powerful greenhouse gases hydrofluorocarbons inferred from atmospheric measurements and their comparison with annual national reports to UNFCCC. Atmospheric Environment, 2017, 158, 85-97.	4.1	31
35	Optimized approach to retrieve information on atmospheric carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186, 81-95.	2.3	15
36	Comparison of four inverse modelling systems applied to the estimation of HFC-125, HFC-134a, and SF ₆ emissions over Europe. Atmospheric Chemistry and Physics, 2017, 17, 10651-10674.	4.9	45

#	Article	IF	CITATIONS
37	Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 2017, 10, 2057-2116.	3.6	350
38	Atmospheric histories and global emissions of halons Hâ€1211 (CBrClF ₂), Hâ€1301 (CBrF ₃), and Hâ€2402 (CBrF ₂ CBrF ₂). Journal of Geophysical Research D: Atmospheres, 2016, 121, 3663-3686.	3.3	24
39	Emissions of carbon tetrachloride from Europe. Atmospheric Chemistry and Physics, 2016, 16, 12849-12859.	4.9	14
40	Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 and air archive observations. Atmospheric Chemistry and Physics, 2016, 16, 365-382.	627 Td (C 4.9	H <sub 30</sub
41	Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nature Geoscience, 2016, 9, 490-495.	12.9	149
42	Tracking New Halogenated Alkenes in the Atmosphere. Chimia, 2016, 70, 365.	0.6	2
43	Towards a Universal "Baseline―Characterisation of Air Masses for High- and Low-Altitude Observing Stations Using Radon-222. Aerosol and Air Quality Research, 2016, 16, 885-899.	2.1	42
44	First observations, trends, and emissions of <scp>HCFCâ€31 (CH₂ClF)</scp> in the global atmosphere. Geophysical Research Letters, 2015, 42, 7817-7824.	4.0	12
45	Abrupt reversal in emissions and atmospheric abundance of HCFC-133a (CF ₃) Tj ETQq1 1 0.784314	1 rgBT /Ovi	erlock 10 Tf5
46	Growth in stratospheric chlorine from shortâ€lived chemicals not controlled by the Montreal Protocol. Geophysical Research Letters, 2015, 42, 4573-4580.	4.0	42
47	Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland. Atmospheric Measurement Techniques, 2015, 8, 4453-4473.	3.1	19
48	ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks. Atmospheric Measurement Techniques, 2015, 8, 2715-2736.	3.1	28
49	First Observations of the Fourth Generation Synthetic Halocarbons HFC-1234yf, HFC-1234ze(E), and HCFC-1233zd(E) in the Atmosphere. Environmental Science & Environmental Scien	10.0	56
50	Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere. Geophysical Research Letters, 2015, 42, 1606-1611.	4.0	119
51	Reconciling reported and unreported HFC emissions with atmospheric observations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5927-5931.	7.1	66
52	Comparison of halocarbon measurements in an atmospheric dry whole air sample. Elementa, 2015, 3, .	3.2	5
53	Final report on CCQM-P151: Halocarbons in dry whole air. Metrologia, 2014, 51, 08014-08014.	1.2	0
54	Results from the International Halocarbons in Air Comparison Experiment (IHALACE). Atmospheric Measurement Techniques, 2014, 7, 469-490.	3.1	37

#	Article	IF	Citations
55	Long-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5Ű N, 8.0Ű E): optimisation of the retrieval strategy, comparison with model simulations and independent observations. Atmospheric Measurement Techniques, 2014, 7, 3861-3872.	3.1	5
56	Spectrometric monitoring of atmospheric carbon tetrafluoride (CF ₄) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate. Atmospheric Measurement Techniques, 2014, 7, 333-344.	3.1	7
57	Adjustment of the wastewater matrix for optimization of membrane systems applied for water reuse in breweries. Journal of Membrane Science, 2014, 465, 68-77.	8.2	20
58	Constraining the carbon tetrachloride (CCl ₄) budget using its global trend and interâ€hemispheric gradient. Geophysical Research Letters, 2014, 41, 5307-5315.	4.0	38
59	HFC-43-10mee atmospheric abundances and global emission estimates. Geophysical Research Letters, 2014, 41, 2228-2235.	4.0	12
60	Global emissions of HFC-143a (CH _{CF₃) and HFC-32 (CH₂) from in situ and air archive atmospheric observations. Atmospheric Chemistry and Physics, 2014, 14, 9249-9258.}	4.9	39
61	Estimates of European emissions of methyl chloroform using a Bayesian inversion method. Atmospheric Chemistry and Physics, 2014, 14, 9755-9770.	4.9	25
62	Reassessing the variability in atmospheric H ₂ using the twoâ€way nested TM5 model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3764-3780.	3.3	26
63	Robust extraction of baseline signal of atmospheric trace species using local regression. Atmospheric Measurement Techniques, 2012, 5, 2613-2624.	3.1	116
64	THE CLASS OF NONLINEAR STOCHASTIC MODELS AS A BACKGROUND FOR THE BURSTY BEHAVIOR IN FINANCIAL MARKETS. International Journal of Modeling, Simulation, and Scientific Computing, 2012, 15, 1250071.	1.4	18
65	Preserving Montreal Protocol Climate Benefits by Limiting HFCs. Science, 2012, 335, 922-923.	12.6	139
66	In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi regional background station, China. Atmospheric Chemistry and Physics, 2012, 12, 10181-10193.	4.9	59
67	Molecular hydrogen (H ₂) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning. Atmospheric Chemistry and Physics, 2012, 12, 6275-6289.	4.9	13
68	An extended Kalman-filter for regional scale inverse emission estimation. Atmospheric Chemistry and Physics, 2012, 12, 3455-3478.	4.9	56
69	A study of four-year HCFC-22 and HCFC-142b in-situ measurements at the Shangdianzi regional background station in China. Atmospheric Environment, 2012, 63, 43-49.	4.1	18
70	Future Emissions and Atmospheric Fate of HFC-1234yf from Mobile Air Conditioners in Europe. Environmental Science & Environmen	10.0	65
71	European Emissions of Halogenated Greenhouse Gases Inferred from Atmospheric Measurements. Environmental Science & Environmental Science & Environment	10.0	48
72	Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa. Journal of Geophysical Research, 2011, 116, .	3.3	48

#	Article	IF	CITATIONS
73	Evidence for underâ€reported western European emissions of the potent greenhouse gas HFCâ€23. Geophysical Research Letters, 2011, 38, .	4.0	29
74	A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion. Atmospheric Chemistry and Physics, 2011, 11, 3375-3392.	4.9	29
75	The determination of a "regional―atmospheric background mixing ratio for anthropogenic greenhouse gases: A comparison of two independent methods. Atmospheric Environment, 2011, 45, 7396-7405.	4.1	29
76	Emissions of anthropogenic hydrogen to the atmosphere during the potential transition to an increasingly H2-intensive economy. International Journal of Hydrogen Energy, 2011, 36, 1122-1135.	7.1	20
77	Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height. Atmospheric Measurement Techniques, 2011, 4, 143-149.	3.1	50
78	History of atmospheric SF ₆ from 1973 to 2008. Atmospheric Chemistry and Physics, 2010, 10, 10305-10320.	4.9	136
79	Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmospheric Chemistry and Physics, 2010, 10, 5515-5533.	4.9	51
80	Molecular hydrogen (H2) emissions from gasoline and diesel vehicles. Science of the Total Environment, 2010, 408, 3596-3606.	8.0	17
81	Analysis of 3-year observations of CFC-11, CFC-12 and CFC-113 from a semi-rural site in China. Atmospheric Environment, 2010, 44, 4454-4462.	4.1	29
82	Measuring atmospheric composition change. Atmospheric Environment, 2009, 43, 5351-5414.	4.1	160
83	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	4.1	714
84	Severe Aromatic Hydrocarbon Pollution in the Arctic Town of Longyearbyen (Svalbard) Caused by Snowmobile Emissions. Environmental Science & Emp; Technology, 2009, 43, 4791-4795.	10.0	15
85	Emissions of ozoneâ€depleting halocarbons from China. Geophysical Research Letters, 2009, 36, .	4.0	85
86	Global and regional emissions of HFCâ€125 (CHF ₂ CF ₃) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories. Journal of Geophysical Research, 2009, 114, .	3.3	38
87	Volatile Organic Compounds in the Global Atmosphere. Eos, 2009, 90, 513-514.	0.1	44
88	An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics, 2009, 9, 1597-1620.	4.9	204
89	Peroxy radicals in the summer free troposphere: seasonality and potential for heterogeneous loss. Atmospheric Chemistry and Physics, 2009, 9, 1989-2006.	4.9	13
90	Statistical analysis of anthropogenic non-methane VOC variability at a European background location (Jungfraujoch, Switzerland). Atmospheric Chemistry and Physics, 2009, 9, 3445-3459.	4.9	29

#	Article	IF	Citations
91	Residential wood burning in an Alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids. Atmospheric Environment, 2008, 42, 8278-8287.	4.1	63
92	An evaluation of the current radiative forcing benefit of the Montreal Protocol at the high-Alpine site Jungfraujoch. Science of the Total Environment, 2008, 391, 217-223.	8.0	8
93	Our changing atmosphere: Evidence based on long-term infrared solar observations at the Jungfraujoch since 1950. Science of the Total Environment, 2008, 391, 184-195.	8.0	82
94	Observations of long-lived anthropogenic halocarbons at the high-Alpine site of Jungfraujoch (Switzerland) for assessment of trends and European sources. Science of the Total Environment, 2008, 391, 224-231.	8.0	56
95	Localization of source regions of selected hydrofluorocarbons combining data collected at two European mountain stations. Science of the Total Environment, 2008, 391, 232-240.	8.0	18
96	Measurements of organic trace gases including oxygenated volatile organic compounds at the high alpine site Jungfraujoch (Switzerland): Seasonal variation and source allocations. Journal of Geophysical Research, 2008, 113, .	3.3	28
97	Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m) Tj ETQq1	1 0.7843	14 rgBT /Ove
98	The $\hat{l}\pm$ -beauty contest: Choosing numbers, thinking intervals. Games and Economic Behavior, 2008, 64, 470-486.	0.8	4
99	Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber. Journal of Geophysical Research, 2008, 113, .	3.3	78
100	Receptor modeling of C–C ₇ hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993–1994 and 2005–2006. Atmospheric Chemistry and Physics, 2008, 8, 2313-2332.	4.9	42
101	â€~Measurements of OVOCs and NMHCs in a Swiss Highway Tunnel for Estimation of Road Transport Emissions. Environmental Science & Emp; Technology, 2007, 41, 7060-7066.	10.0	55
102	European Emissions of HFC-365mfc, a Chlorine-Free Substitute for the Foam Blowing Agents HCFC-141b and CFC-11. Environmental Science & Environmental S	10.0	25
103	Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates. Journal of Geophysical Research, 2007, 112, .	3.3	48
104	A photochemical modeling study of ozone and formaldehyde generation and budget in the Po basin. Journal of Geophysical Research, 2007, 112, .	3.3	21
105	The phase-in and phase-out of European emissions of HCFC-141b and HCFC-142b under the Montreal Protocol: Evidence from observations at Mace Head, Ireland and Jungfraujoch, Switzerland from 1994 to 2004. Atmospheric Environment, 2007, 41, 757-767.	4.1	38
106	Perennial observations of molecular hydrogen (H2) at a suburban site in Switzerland. Atmospheric Environment, 2007, 41, 2111-2124.	4.1	38
107	Road vehicle emissions of molecular hydrogen (H2) from a tunnel study. Atmospheric Environment, 2007, 41, 8355-8369.	4.1	46
108	Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): Seasonal variation and source allocation. Atmospheric Environment, 2007, 41, 8409-8423.	4.1	93

7

#	Article	IF	CITATIONS
109	Price dynamics from a simple multiplicative random process model. European Physical Journal B, 2007, 56, 381-394.	1.5	O
110	First appearance and rapid growth of anthropogenic HFC-245fa (CHF2CH2CF3) in the atmosphere. Geophysical Research Letters, 2006, 33, .	4.0	19
111	Low European methyl chloroform emissions inferred from long-term atmospheric measurements. Nature, 2005, 433, 506-508.	27.8	61
112	Hydrocarbon concentrations at the Alpine mountain sites Jungfraujoch and Arosa. Atmospheric Environment, 2005, 39, 1113-1127.	4.1	32
113	Large decrease of VOC emissions of Switzerland's car fleet during the past decade: results from a highway tunnel study. Atmospheric Environment, 2005, 39, 1009-1018.	4.1	55
114	Volatile Organic Compounds in the Po Basin. Part A: Anthropogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 271-291.	3.2	31
115	Volatile Organic Compounds in the Po Basin. Part B: Biogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 293-315.	3.2	26
116	Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	267
117	Influence of mountain venting in the Alps on the ozone chemistry of the lower free troposphere and the European pollution export. Journal of Geophysical Research, 2005, 110, .	3.3	50
118	Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from $Z\tilde{A}^{1}\!\!/\!\!4$ rich, Switzerland. Atmospheric Environment, 2004, 38, 4035-4044.	4.1	147
119	Emissions of the Refrigerants HFC-134a, HCFC-22, and CFC-12 from Road Traffic:Â Results from a Tunnel Study (Gubrist Tunnel, Switzerland). Environmental Science & Emp; Technology, 2004, 38, 1998-2004.	10.0	24
120	Halogenated greenhouse gases at the Swiss High Alpine Site of Jungfraujoch (3580 m asl): Continuous measurements and their use for regional European source allocation. Journal of Geophysical Research, 2004, 109, .	3.3	74
121	Regional Emissions of Anthropogenic Halocarbons Derived from Continuous Measurements of Ambient Air in Switzerland. Chimia, 2003, 57, 522-528.	0.6	13
122	The anthropogenic contribution to isoprene concentrations in a rural atmosphere. Atmospheric Environment, 2000, 34, 109-115.	4.1	99
123	A comparison of benzene, toluene and C2-benzenes mixing ratios in automotive exhaust and in the suburban atmosphere during the introduction of catalytic converter technology to the Swiss Car Fleet. Atmospheric Environment, 2000, 34, 3103-3116.	4.1	74
124	Chloroacetic Acids in Rainwater. Environmental Science & Environmental Science	10.0	70
125	Global-Scale Tropospheric Lagrangian Particle Models With Linear Chemistry. Geophysical Monograph Series, 0, , 235-250.	0.1	3
126	Estimating European Halocarbon Emissions Using Lagrangian Backward Transport Modeling and in Situ Measurements at the Jungfraujoch High-Alpine Site. Geophysical Monograph Series, 0, , 207-222.	0.1	10