
Igor Spigelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/712635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of voltage-gated sodium channels in axonal signal propagation of trigeminal ganglion neurons after infraorbital nerve entrapment. Neurobiology of Pain (Cambridge, Mass), 2022, 11, 100084.	1.0	5
2	Sex differences in αâ€adrenergic receptor function contribute to impaired hypothalamic metaplasticity following chronic intermittent ethanol exposure. Alcoholism: Clinical and Experimental Research, 2022, 46, 1384-1396.	1.4	5
3	Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain, 2021, Publish Ahead of Print, 2246-2262.	2.0	11
4	Impact of stress resilience and susceptibility on fear learning, anxiety, and alcohol intake. Neurobiology of Stress, 2021, 15, 100335.	1.9	7
5	Brain Penetrant, but not Peripherally Restricted, Synthetic Cannabinoid 1 Receptor Agonists Promote Morphine-Mediated Respiratory Depression. Cannabis and Cannabinoid Research, 2021, , .	1.5	5
6	Long-Acting Glucagon-Like Peptide-1 Receptor Agonists Suppress Voluntary Alcohol Intake in Male Wistar Rats. Frontiers in Neuroscience, 2020, 14, 599646.	1.4	30
7	Sex-dependent effects of chronic intermittent voluntary alcohol consumption on attentional, not motivational, measures during probabilistic learning and reversal. PLoS ONE, 2020, 15, e0234729.	1.1	21
8	Chronic alcohol disrupts hypothalamic responses to stress by modifying CRF and NMDA receptor function. Neuropharmacology, 2020, 167, 107991.	2.0	13
9	Molecular consequences of fetal alcohol exposure on amniotic exosomal miRNAs with functional implications for stem cell potency and differentiation. PLoS ONE, 2020, 15, e0242276.	1.1	11
10	A Role for The P2Y1 Receptor in Nonsynaptic Cross-depolarization in the Rat Dorsal Root Ganglia. Neuroscience, 2019, 423, 98-108.	1.1	9
11	Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1 ^{G93A} Mouse Model for ALS. Journal of Neuroscience, 2019, 39, 8798-8815.	1.7	29
12	Peripherally restricted cannabinoid 1 receptor agonist as a novel analgesic in cancer-induced bone pain. Pain, 2018, 159, 1814-1823.	2.0	29
13	Synthetic peripherally-restricted cannabinoid suppresses chemotherapy-induced peripheral neuropathy pain symptoms by CB1 receptor activation. Neuropharmacology, 2018, 139, 85-97.	2.0	41
14	<i>α</i> 2 Subunit–Containing GABA _A Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus. Molecular Pharmacology, 2017, 92, 101-112.	1.0	20
15	Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain. Journal of Medicinal Chemistry, 2016, 59, 7525-7543.	2.9	53
16	Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress. Neuropsychopharmacology, 2016, 41, 45-57.	2.8	89
17	Selective modulation of GABAergic tonic current by dopamine in the nucleus accumbens of alcohol-dependent rats. Journal of Neurophysiology, 2014, 112, 51-60.	0.9	18
18	Plasticity of GABA _A receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats. Journal of Neurophysiology, 2014, 112, 39-50.	0.9	22

IGOR SPIGELMAN

#	Article	IF	CITATIONS
19	A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials, 2014, 35, 8780-8790.	5.7	120
20	Dihydromyricetin Prevents Fetal Alcohol Exposure-Induced Behavioral and Physiological Deficits: The Roles of GABAA Receptors in Adolescence. Neurochemical Research, 2014, 39, 1147-1161.	1.6	35
21	Ethanol-Induced Plasticity of GABAA Receptors in the Basolateral Amygdala. Neurochemical Research, 2014, 39, 1162-1170.	1.6	40
22	Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells. Stem Cell Research, 2014, 12, 791-806.	0.3	65
23	Stress Increases Voluntary Alcohol Intake, but Does not Alter Established Drinking Habits in a Rat Model of Posttraumatic Stress Disorder. Alcoholism: Clinical and Experimental Research, 2013, 37, 566-574.	1.4	78
24	Dihydromyricetin As a Novel Anti-Alcohol Intoxication Medication. Journal of Neuroscience, 2012, 32, 390-401.	1.7	184
25	Effects of alcohol on the membrane excitability and synaptic transmission of medium spiny neurons in the nucleus accumbens. Alcohol, 2012, 46, 317-327.	0.8	31
26	Interleukin 10 (ILâ€10) inhibits GABAergic transmission in rat hippocampal neurons by a mechanism involving phosphatidylinositol 3â€kinase. FASEB Journal, 2012, 26, lb571.	0.2	0
27	Plasticity of GABA _A Receptors after Ethanol Pre-Exposure in Cultured Hippocampal Neurons. Molecular Pharmacology, 2011, 79, 432-442.	1.0	36
28	Relationship of Axonal Voltage-gated Sodium Channel 1.8 (NaV1.8) mRNA Accumulation to Sciatic Nerve Injury-induced Painful Neuropathy in Rats. Journal of Biological Chemistry, 2011, 286, 39836-39847.	1.6	36
29	Seizure-induced basal dendrites on granule cells. Epilepsia, 2010, 51, 43-43.	2.6	2
30	Dentate granule cells form hilar basal dendrites in a rat model of hypoxia–ischemia. Brain Research, 2009, 1285, 182-187.	1.1	6
31	Microglia-associated granule cell death in the normal adult dentate gyrus. Brain Structure and Function, 2009, 214, 25-35.	1.2	18
32	Tolerance to Sedative/Hypnotic Actions of GABAergic Drugs Correlates With Tolerance to Potentiation of Extrasynaptic Tonic Currents of Alcohol-Dependent Rats. Journal of Neurophysiology, 2009, 102, 224-233.	0.9	39
33	Normal Acute Behavioral Responses to Moderate/High Dose Ethanol in GABA _A Receptor α4 Subunit Knockout Mice. Alcoholism: Clinical and Experimental Research, 2008, 32, 10-18.	1.4	38
34	Functional Consequences of GABA _A Receptor α4 Subunit Deletion on Synaptic and Extrasynaptic Currents in Mouse Dentate Granule Cells. Alcoholism: Clinical and Experimental Research, 2008, 32, 19-26.	1.4	54
35	Mechanisms of Reversible GABA _A Receptor Plasticity after Ethanol Intoxication. Journal of Neuroscience, 2007, 27, 12367-12377.	1.7	139
36	Subcutaneous Peripheral Injection of Cationized Gelatin/DNA Polyplexes As a Platform for Non-viral Gene Transfer to Sensory Neurons. Molecular Therapy, 2007, 15, 2124-2131.	3.7	32

IGOR SPIGELMAN

#	Article	lF	CITATIONS
37	Bidirectional Alterations of Hippocampal Cannabinoid 1 Receptors and Their Endogenous Ligands in a Rat Model of Alcohol Withdrawal and Dependence. Alcoholism: Clinical and Experimental Research, 2007, 31, 855-867.	1.4	83
38	Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain, 2006, 126, 102-114.	2.0	184
39	Chronic Intermittent Ethanol-Induced Switch of Ethanol Actions from Extrasynaptic to Synaptic Hippocampal GABAA Receptors. Journal of Neuroscience, 2006, 26, 1749-1758.	1.7	145
40	Plasticity of GABAA Receptors in Brains of Rats Treated with Chronic Intermittent Ethanol. Neurochemical Research, 2005, 30, 1579-1588.	1.6	38
41	Hyperosmolar Solutions Selectively Block Action Potentials in Rat Myelinated Sensory Fibers: Implications for Diabetic Neuropathy. Journal of Neurophysiology, 2004, 91, 48-56.	0.9	39
42	Altered Pharmacology of Synaptic and Extrasynaptic GABAA Receptors on CA1 Hippocampal Neurons Is Consistent with Subunit Changes in a Model of Alcohol Withdrawal and Dependence. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 1234-1245.	1.3	121
43	Temporal profile of hilar basal dendrite formation on dentate granule cells after status epilepticus. Epilepsy Research, 2003, 54, 141-151.	0.8	44
44	Withdrawal from Chronic Intermittent Ethanol Treatment Changes Subunit Composition, Reduces Synaptic Function, and Decreases Behavioral Responses to Positive Allosteric Modulators of GABAAReceptors. Molecular Pharmacology, 2003, 63, 53-64.	1.0	298
45	Reduced Inhibition and Sensitivity to Neurosteroids in Hippocampus of Mice Lacking the GABAA Receptor δSubunit. Journal of Neurophysiology, 2003, 90, 903-910.	0.9	144
46	Microdialysis in trigeminal ganglia. Brain Research Protocols, 2002, 10, 102-108.	1.7	7
47	Atypical features of rat dentate granule cells: recurrent basal dendrites and apical axons. Anatomy and Embryology, 2001, 203, 203-209.	1.5	22
48	Concurrent release of ATP and substance P within guinea pig trigeminal ganglia in vivo. Brain Research, 2001, 915, 248-255.	1.1	119
49	Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. Journal of Comparative Neurology, 2000, 428, 240-253.	0.9	217
50	Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Research, 2000, 871, 181-191.	1.1	78
51	Intravenously administered cell-permeant calcium buffer decreases evoked synaptic potentials in rat dentate gyrus in vivo. Brain Research, 1998, 810, 269-273.	1.1	1
52	Persistent reduction of GABAA receptor-mediated inhibition in rat hippocampus after chronic intermittent ethanol treatment. Brain Research, 1996, 709, 221-228.	1.1	97
53	Chronic epilepsy with damage restricted to the hippocampus: possible mechanisms. Epilepsy Research, 1996, 26, 255-265.	0.8	45
54	Zinc modulation of GABAA receptor-mediated chloride flux in rat hippocampal slices. Brain Research, 1995, 691, 125-132.	1.1	7

#	Article	IF	CITATIONS
55	Mechanism of Action and Persistence of Neuroprotection by Cell-Permeant Ca ²⁺ Chelators. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 911-923.	2.4	71
56	Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron, 1993, 11, 221-235.	3.8	215
57	Substance P Actions on Sensory Neurons. Annals of the New York Academy of Sciences, 1991, 632, 220-228.	1.8	23