
Bill Batchelor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7126280/publications.pdf Version: 2024-02-01

RILL RATCHELOR

#	Article	IF	CITATIONS
1	Abiotic Reductive Dechlorination of Chlorinated Ethylenes by Iron-Bearing Soil Minerals. 1. Pyrite and Magnetite. Environmental Science & 2007, Technology, 2002, 36, 5147-5154.	4.6	263
2	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214
3	Photosynthesis of formate from CO ₂ and water at 1% energy efficiency via copper iron oxide catalysis. Energy and Environmental Science, 2015, 8, 2638-2643.	15.6	204
4	Abiotic Reductive Dechlorination of Chlorinated Ethylenes by Iron-Bearing Soil Minerals. 2. Green Rust. Environmental Science & Technology, 2002, 36, 5348-5354.	4.6	198
5	Overview of waste stabilization with cement. Waste Management, 2006, 26, 689-698.	3.7	179
6	Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition. Environmental Science & Technology, 2017, 51, 13372-13379.	4.6	162
7	Advanced Reduction Processes: A New Class of Treatment Processes. Environmental Engineering Science, 2013, 30, 264-271.	0.8	154
8	Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere, 2009, 75, 8-12.	4.2	151
9	Multifunctional redox-tuned viologen-based covalent organic polymers. Journal of Materials Chemistry A, 2016, 4, 15361-15369.	5.2	114
10	Reductive Capacity of Natural Reductants. Environmental Science & Technology, 2003, 37, 535-541.	4.6	109
11	Oxygenâ€Deficient Cobaltâ€Based Oxides for Electrocatalytic Water Splitting. ChemSusChem, 2021, 14, 10-32.	3.6	103
12	Anodic Dissolution of Pure Aluminum during Electrocoagulation Process: Influence of Supporting Electrolyte, Initial pH, and Current Density. Industrial & Engineering Chemistry Research, 2011, 50, 13362-13372.	1.8	98
13	A review on lithium recovery using electrochemical capturing systems. Desalination, 2021, 500, 114883.	4.0	96
14	Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs): Effects of process variables and mechanisms. Chemical Engineering Journal, 2014, 237, 300-307.	6.6	89
15	Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors. Journal of Materials Chemistry A, 2016, 4, 6385-6394.	5.2	83
16	Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process. Journal of Hazardous Materials, 2013, 262, 348-356.	6.5	82
17	Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): Effects of process variables and a kinetic model. Science of the Total Environment, 2013, 454-455, 578-583.	3.9	80
18	Photo-Fenton Treatment of Actual Agro-Industrial Wastewaters. Industrial & Engineering Chemistry Research, 2011, 50, 6673-6680.	1.8	79

#	Article	IF	CITATIONS
19	Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Research, 2014, 53, 310-321.	5.3	79
20	Removal of Hexavalent Chromium from Groundwater by Granular Activated Carbon. Water Environment Research, 2000, 72, 29-39.	1.3	75
21	A kinetic model for autotrophic denitrification using elemental sulfur. Water Research, 1978, 12, 1075-1084.	5.3	72
22	Macroscopic and X-ray Photoelectron Spectroscopic Investigation of Interactions of Arsenic with Synthesized Pyrite. Environmental Science & amp; Technology, 2009, 43, 2899-2904.	4.6	70
23	<scp>XPS</scp> analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (<scp>FeS</scp>). Environmental Progress and Sustainable Energy, 2013, 32, 84-93.	1.3	67
24	Application of UV–sulfite advanced reduction process to bromate removal. Journal of Water Process Engineering, 2015, 5, 76-82.	2.6	67
25	Fischer–Tropsch Synthesis in Slurry Bubble Column Reactors: Experimental Investigations and Modeling – A Review. International Journal of Chemical Reactor Engineering, 2015, 13, 201-288.	0.6	67
26	Photochemical degradation of vinyl chloride with an Advanced Reduction Process (ARP) – Effects of reagents and pH. Chemical Engineering Journal, 2013, 215-216, 868-875.	6.6	66
27	Riverbank filtration for sustainable water supply: application to a large-scale facility on the Nile River. Clean Technologies and Environmental Policy, 2008, 10, 351-358.	2.1	64
28	Sorption of selenium(IV) and selenium(VI) to mackinawite (FeS): Effect of contact time, extent of removal, sorption envelopes. Journal of Hazardous Materials, 2011, 186, 451-457.	6.5	64
29	Removal of arsenite(As(III)) and arsenate(As(V)) by synthetic pyrite (FeS 2): Synthesis, effect of contact time, and sorption/desorption envelopes. Journal of Colloid and Interface Science, 2013, 392, 311-318.	5.0	64
30	Effect of low- and medium-pressure Hg UV irradiation on bromate removal in advanced reduction process. Chemosphere, 2014, 117, 663-672.	4.2	62
31	Synthesis, characterization, and application of pyrite for removal of mercury. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 326-335.	2.3	53
32	A Short Review on Hydrogen, Biofuel, and Electricity Production Using Seawater as a Medium. Energy & Fuels, 2018, 32, 6423-6437.	2.5	53
33	Leach models: Theory and application. Journal of Hazardous Materials, 1990, 24, 255-266.	6.5	52
34	Salinity gradient energy generation by pressure retarded osmosis: A review. Desalination, 2021, 500, 114841.	4.0	52
35	Reductive Dechlorination of Tetrachloroethylene by Fe(II) in Cement Slurries. Environmental Science & Technology, 2000, 34, 5017-5022.	4.6	48
36	Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Materials Research Bulletin, 2009, 44, 1553-1558.	2.7	47

#	Article	IF	CITATIONS
37	Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide. Chemosphere, 2016, 163, 351-358.	4.2	47
38	Dual modification of hematite photoanode by Sn-doping and Nb2O5 layer for water oxidation. Applied Catalysis B: Environmental, 2017, 201, 591-599.	10.8	47
39	Oxygen-deficient perovskites for oxygen evolution reaction in alkaline media: a review. Emergent Materials, 2020, 3, 567-590.	3.2	47
40	Two-stage sulfate removal from reject brine in inland desalination with zero-liquid discharge. Desalination, 2015, 362, 52-58.	4.0	46
41	Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): Spectroscopic and microscopic analyses. Journal of Colloid and Interface Science, 2012, 368, 496-504.	5.0	45
42	Leach Models for Contaminants Immobilized by pH-Dependent Mechanisms. Environmental Science & Technology, 1998, 32, 1721-1726.	4.6	44
43	Fe ₃ O ₄ –Ag ₂ WO ₄ : facile synthesis, characterization and visible light assisted photocatalytic activity. New Journal of Chemistry, 2017, 41, 11722-11730.	1.4	43
44	Degradation of 1,2-dichloroethane using advanced reduction processes. Journal of Environmental Chemical Engineering, 2014, 2, 731-737.	3.3	38
45	Membrane distillation coupled with a novel two-stage pretreatment process for petrochemical wastewater treatment and reuse. Separation and Purification Technology, 2019, 224, 23-32.	3.9	38
46	Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates. Chemosphere, 2004, 56, 999-1009.	4.2	36
47	Surface complexation modeling of arsenic(III) and arsenic(V) adsorption onto nanoporous titania adsorbents (NTAs). Journal of Colloid and Interface Science, 2010, 348, 591-599.	5.0	35
48	Nitrate reduction by green rusts modified with trace metals. Chemosphere, 2012, 86, 860-865.	4.2	35
49	Chloride Removal from Recycled Cooling Water Using Ultra-High Lime with Aluminum Process. Water Environment Research, 2002, 74, 256-263.	1.3	34
50	Nitrate reduction by fluoride green rust modified with copper. Chemosphere, 2008, 70, 1108-1116.	4.2	34
51	A multi-component numerical leach model coupled with a general chemical speciation code. Water Research, 2002, 36, 156-166.	5.3	33
52	A systems-integration approach to the optimization of macroscopic water desalination and distribution networks: a general framework applied to Qatar's water resources. Clean Technologies and Environmental Policy, 2012, 14, 161-171.	2.1	33
53	Reductive Dechlorination of Tetrachloroethylene in Soils by Fe(II)-Based Degradative Solidification/Stabilization. Environmental Science & Technology, 2001, 35, 3792-3797.	4.6	32
54	The diafiltration method for the study of the binding of macromolecules to heavy metals. Journal of Membrane Science, 1994, 89, 257-265.	4.1	31

#	Article	IF	CITATIONS
55	Photochemical degradation of trichloroethylene by sulfite-mediated UV irradiation. Journal of Environmental Chemical Engineering, 2015, 3, 2194-2202.	3.3	29
56	Amendment of hydroxyapatite in reduction of tetrachloroethylene by zero-valent zinc: Its rate enhancing effect and removal of Zn(II). Chemosphere, 2008, 73, 1420-1427.	4.2	28
57	Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT). Journal of Hazardous Materials, 2011, 197, 183-189.	6.5	28
58	Solution combustion synthesis and physico-chemical properties of ultrafine CeO ₂ nanoparticles and their photocatalytic activity. RSC Advances, 2016, 6, 51238-51245.	1.7	28
59	Corrosion behavior of pure titanium anodes in saline medium and their performance for humic acid removal by electrocoagulation. Chemosphere, 2020, 246, 125674.	4.2	28
60	Adapting Early Transition Metal and Nonmetallic Dopants on CoFe Oxyhydroxides for Enhanced Alkaline and Neutral pH Saline Water Oxidation. ACS Applied Energy Materials, 2021, 4, 6942-6956.	2.5	28
61	FeOOH and Fe2O3 co-grafted TiO2 photocatalysts for bisphenol A degradation in water. Catalysis Communications, 2017, 97, 125-129.	1.6	27
62	Enhanced water permeability and osmotic power generation with sulfonate-functionalized porous polymer-incorporated thin film nanocomposite membranes. Desalination, 2020, 496, 114756.	4.0	26
63	Surface microenvironment engineering of black V2O5 nanostructures for visible light photodegradation of methylene blue. Journal of Alloys and Compounds, 2021, 871, 159615.	2.8	26
64	Binding of Heavy Metals to Derivatives of Cholesterol and Sodium Dodecyl Sulfate. Journal of Environmental Engineering, ASCE, 1995, 121, 645-652.	0.7	25
65	Abiotic reductive dechlorination of chlorinated ethylenes by soil. Chemosphere, 2004, 55, 705-713.	4.2	25
66	An electrical conductivity method for measuring the effects of additives on effective diffusivities in portland cement pastes. Cement and Concrete Research, 1994, 24, 752-764.	4.6	24
67	Mineralogical alterations that affect the durability and metals containment of aged solidified and stabilized wastes. Cement and Concrete Research, 1999, 29, 1433-1440.	4.6	24
68	Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model II. Cement and Concrete Research, 1999, 29, 99-105.	4.6	22
69	Reductive dechlorination of chlorinated methanes in cement slurries containing Fe(II). Chemosphere, 2002, 48, 1019-1027.	4.2	22
70	Removal of arsenite by reductive precipitation in dithionite solution activated by UV light. Journal of Environmental Sciences, 2018, 74, 168-176.	3.2	22
71	Mesoporous TiO ₂ –BiOBr microspheres with tailorable adsorption capacities for photodegradation of organic water pollutants: probing adsorption–photocatalysis synergy by combining experiments and kinetic modeling. Environmental Science: Water Research and Technology, 2019. 5, 769-781.	1.2	22
72	Early Transition-Metal-Based Binary Oxide/Nitride for Efficient Electrocatalytic Hydrogen Evolution from Saline Water in Different pH Environments. ACS Applied Materials & amp; Interfaces, 2021, 13, 53702-53716.	4.0	22

5

#	Article	IF	CITATIONS
73	Identification of Active Agents for Tetrachloroethylene Degradation in Portland Cement Slurry Containing Ferrous Iron. Environmental Science & Technology, 2007, 41, 5824-5832.	4.6	21
74	Electroâ€Fenton Treatment of Photographic Processing Wastewater. Clean - Soil, Air, Water, 2013, 41, 635-644.	0.7	21
75	Aliphatic polyketone-based thin film composite membrane with mussel-inspired polydopamine intermediate layer for high performance osmotic power generation. Desalination, 2021, 516, 115222.	4.0	21
76	Kinetics of aluminum hydrolysis: measurement and characterization of reaction products. Environmental Science & Technology, 1986, 20, 891-894.	4.6	20
77	Surfactant-Enhanced Ultrafiltration of Heavy Metals from Waste Streams with Pilot-Scale System. Hazardous Waste and Hazardous Materials, 1994, 11, 385-395.	0.4	20
78	Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model Part I. Chemical representation of cementitious binders. Cement and Concrete Research, 1999, 29, 361-368.	4.6	20
79	Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids. Journal of Hazardous Materials, 2002, 92, 143-159.	6.5	19
80	Application of a reactive adsorbent-coated support system for removal of mercury(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 623-630.	2.3	19
81	A windable and stretchable three-dimensional all-inorganic membrane for efficient oil/water separation. Scientific Reports, 2017, 7, 16081.	1.6	18
82	Measurement of Effective Diffusivities in Solidified Wastes. Journal of Environmental Engineering, ASCE, 1993, 119, 17-33.	0.7	17
83	Empirical Partitioning Leach Model for Solidified/Stabilized Wastes. Journal of Environmental Engineering, ASCE, 2001, 127, 188-195.	0.7	17
84	An Equilibrium Model for Chloride Removal from Recycled Cooling Water Using the Ultra-High Lime with Aluminum Process. Water Environment Research, 2005, 77, 3059-3065.	1.3	17
85	Arsenic removal using advanced reduction process with dithionite/UV—A kinetic study. Journal of Water Process Engineering, 2018, 23, 314-319.	2.6	17
86	Local Surface Modulation Activates Metal Oxide Electrocatalyst for Hydrogen Evolution: Synthesis, Characterization, and DFT Study of Novel Black ZnO. ACS Applied Energy Materials, 2020, 3, 10590-10599.	2.5	17
87	Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries. Journal of Hazardous Materials, 2008, 152, 62-70.	6.5	16
88	Impacts of natural organic matter on perchlorate removal by an advanced reduction process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 731-740.	0.9	16
89	Reductive Dechlorination of Tetrachloroethylene by Green Rusts Modified with Copper. Water, Air, and Soil Pollution, 2010, 212, 407-417.	1.1	15
90	Effects of pH, Temperature, and Water Quality on Chloride Removal with Ultra-High Lime with Aluminum Process. Water Environment Research, 2006, 78, 930-937.	1.3	14

#	Article	IF	CITATIONS
91	Impact of natural organic matter on bromate removal in the sulfite/UV-L advanced reduction process. Water Science and Technology: Water Supply, 2017, 17, 461-471.	1.0	14
92	Photochemical Degradation of Arsenic and Selenium with Advanced Reduction Processes—Effects of Reagents. Environmental Engineering Science, 2017, 34, 481-488.	0.8	13
93	Solution Combustion Synthesis of Novel S,B-Codoped CoFe Oxyhydroxides for the Oxygen Evolution Reaction in Saline Water. ACS Omega, 2022, 7, 5521-5536.	1.6	13
94	Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technologies and Environmental Policy, 2011, 13, 783-796.	2.1	12
95	Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode. Water Science and Technology, 2015, 72, 1780-1788.	1.2	12
96	Bromate reduction by ultraviolet light irradiation using medium pressure lamp. International Journal of Environmental Studies, 2013, 70, 566-582.	0.7	11
97	Degradation of perchlorate in water using aqueous multivalent titanium: Effect of titanium type, ionic strength, and metal and solid catalysts. Journal of Colloid and Interface Science, 2012, 380, 128-133.	5.0	10
98	Perchlorate degradation using a titanium and membrane hybrid (TMH) system: Transport, adsorption, chemical reduction. Journal of Membrane Science, 2012, 390-391, 84-92.	4.1	10
99	Synthesis of integrated membrane desalination and salt production networks. Desalination, 2016, 400, 25-37.	4.0	10
100	Influence of nanoparticle inclusions on the performance of reverse osmosis membranes. Environmental Science: Water Research and Technology, 2018, 4, 411-420.	1.2	10
101	Kinetic Study of Selenium Removal Using Advanced Reduction Process with Dithionite. Environmental Engineering Science, 2018, 35, 169-175.	0.8	10
102	Electrooxidation behavior of ethanol toward carbon microbead-encapsulated ZnO particles derived from coffee waste. Journal of Materials Science: Materials in Electronics, 2020, 31, 6530-6537.	1.1	10
103	Interactions Between Chloride and Sulfate or Silica Removals Using an Advanced Lime-Aluminum Softening Process. Water Environment Research, 2006, 78, 2474-2479.	1.3	9
104	Process integration techniques for optimizing seawater cooling systems and biocide discharge. Clean Technologies and Environmental Policy, 2006, 8, 203-215.	2.1	9
105	As(V) adsorption onto nanoporous titania adsorbents (NTAs): Effects of solution composition. Journal of Hazardous Materials, 2012, 229-230, 273-281.	6.5	9
106	Perchlorate degradation using aqueous titanium ions produced by oxidative dissolution of zero-valent titanium. Chemical Engineering Journal, 2012, 192, 301-307.	6.6	9
107	Exploration of Ag decoration and Bi doping on the photocatalytic activity αâ€Fe ₂ O ₃ under simulated solar light irradiation. Canadian Journal of Chemical Engineering, 2018, 96, 1713-1722.	0.9	9
108	A Framework for Risk Assessment of Disposal of Contaminated Materials Treated by Solidification/Stabilization. Environmental Engineering Science, 1997, 14, 3-13.	0.8	8

#	Article	IF	CITATIONS
109	General Chemical Equilibrium Model for Stabilized/Solidified Wastes. Journal of Environmental Engineering, ASCE, 2002, 128, 653-661.	0.7	8
110	X-Ray Photoelectron Spectroscopic Investigation of Interactions of Arsenic with Microwave Synthesized Pyrite as a Function of pH. Environmental Engineering Science, 2009, 26, 1785-1793.	0.8	8
111	Defect minimized Ag-ZnO microneedles for photocatalysis. Environmental Science and Pollution Research, 2020, 27, 37036-37043.	2.7	8
112	Kinetics of transformation of 1,1,1-trichloroethane by Fe(II) in cement slurries. Journal of Hazardous Materials, 2009, 163, 1315-1321.	6.5	7
113	Effect of Cement Type on Performance of Ferrous Iron–Based Degradative Solidification and Stabilization. Environmental Engineering Science, 2010, 27, 977-987.	0.8	7
114	Photocatalytic reduction of chlorate in aqueous TiO2 suspension with hole scavenger under simulated solar light. Emergent Materials, 2021, 4, 435-446.	3.2	7
115	Simulated Infinite-Dilution Leach Test. Environmental Engineering Science, 2006, 23, 4-13.	0.8	6
116	Response to Comment on "Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition― Environmental Science & Technology, 2018, 52, 1677-1678.	4.6	6
117	Removal of Se(IV) by the Dithionite/Ultraviolet Advanced Reduction Process: Effects of Process Variables. Environmental Engineering Science, 2018, 35, 927-936.	0.8	6
118	Self-oxygenated anatase–rutile phase junction: ensuring the availability of sufficient surface charges for photocatalysis. New Journal of Chemistry, 2020, 44, 5513-5518.	1.4	6
119	Chapter 4 Stabilization/solidification of hazardous wastes in soil matrices. Advances in Porous Media, 1996, , 307-359.	0.2	5
120	Interactions Between Chloride and Sulfate or Silica Removals from Wastewater Using an Advanced Lime-Aluminum Softening Process: Equilibrium Modeling. Water Environment Research, 2007, 79, 528-535.	1.3	5
121	Dechlorination of trichloroethylene formed from 1,1,2,2-tetrachloroethane by dehydrochlorination in Portland cement slurry including Fe(II). Chemosphere, 2008, 71, 726-734.	4.2	5
122	PCE DNAPL degradation using ferrous iron solid mixture (ISM). Chemosphere, 2009, 76, 1082-1087.	4.2	5
123	Electrochemical Treatment of synthetic and Actual Dyeing Wastewaters Using BDD Anodes. Air, Soil and Water Research, 2010, 3, ASWR.S3639.	1.2	5
124	Reduction of perchlorate using zero-valent titanium (ZVT) anode: Kinetic models. Journal of Colloid and Interface Science, 2012, 385, 122-129.	5.0	5
125	Surface treatment-controlled solvothermal synthesis of highly active reduced 1D titania with heterojunctioned carbon allotrope. Emergent Materials, 2021, 4, 389-402.	3.2	5
126	Treatment of Pharmaceutical-manufacturing Wastewaters by UV Irradiation/Hydrogen Peroxide Process. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	4

#	Article	IF	CITATIONS
127	Reductive dechlorination of chlorinated hydrocarbons as non-aqueous phase liquid (NAPL): Preliminary investigation on effects of cement doses. Science of the Total Environment, 2012, 430, 82-87.	3.9	4
128	Nitrate Reduction by the Ultraviolet-Sulfite Advanced Reduction Process. Environmental Engineering Science, 2021, 38, 927-935.	0.8	4
129	An Equilibrium Model for Chloride Removal from Recycled Cooling Water Using Ultra-High Lime with Aluminum Process. Proceedings of the Water Environment Federation, 2002, 2002, 23-39.	0.0	3
130	Effects of pH, Temperature, and Water Quality on Chloride Removal with Ultra-High Lime with Aluminum Process. Proceedings of the Water Environment Federation, 2003, 2003, 54-72.	0.0	3
131	Electrochemical Inactivation of P. Aeruginosa, A. hydrophila, L. pneumophila using Boron Doped Diamond Anodes. Journal of Advanced Oxidation Technologies, 2013, 16, .	0.5	3
132	Pyrite (FeS2)-supported ultrafiltration system for removal of mercury (II) from water. Emergent Materials, 2021, 4, 1441-1453.	3.2	3
133	Towards a Holistic Approach to the Sustainable Use of Seawater for Process Cooling. , 2009, , 332-340.		3
134	A multi-component partitioning model to predict leaching from solidified oily wastes. Waste Management, 1993, 13, 515.	3.7	2
135	Models as metaphors: The role of modeling in pollution prevention. Waste Management, 1994, 14, 243-251.	3.7	2
136	Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries. Chemosphere, 2007, 68, 1254-1261.	4.2	2
137	Evaluating alternative aluminium sources for chloride removal from recycled cooling water. International Journal of Environmental Technology and Management, 2013, 16, 234.	0.1	2
138	Reductive dechlorination of DNAPL mixtures with Fe(II/III)-L and Fe(II)-C: Evaluation using a kinetic model for the competitions. Science of the Total Environment, 2018, 624, 872-877.	3.9	2
139	Approximating effective diffusivities of hazardous ions solidified in portland cement. Journal of Hazardous Materials, 1991, 28, 192.	6.5	1
140	Incorporating chemical and physical mechanisms into leaching models for solidified hazardous wastes. Journal of Hazardous Materials, 1989, 22, 266-267.	6.5	0
141	Binding chemistry and leaching mechanisms in solidified wastes. Waste Management, 1994, 14, 334-335.	3.7	0
142	Stochastic risk assessment of bioremediation. Waste Management, 1994, 14, 342-343.	3.7	0
143	EVALUATING ALTERNATIVE ALUMINUM SOURCES FOR CHLORIDE REMOVAL FROM RECYCLED COOLING WATER. Proceedings of the Water Environment Federation, 2005, 2005, 8106-8115.	0.0	0
144	Simulation Model for Multicomponent Removals from Recycled Cooling Water. Journal of Environmental Engineering, ASCE, 2011, 137, 1199-1204.	0.7	0

#	Article	IF	CITATIONS
145	A systems integration approach to the optimum operation and scheduling of biocide usage and discharge for seawater cooling systems. International Journal of Process Systems Engineering, 2012, 2, 1.	0.2	0
146	Enhancing water permeability with super-hydrophilic metal–organic frameworks and hydrophobic straight pores. Environmental Science: Water Research and Technology, 0, , .	1.2	0
147	Application of TiO2–WO3 Composite for Continuous Reduction of Chromium(VI) in Light-limited Condition. , 2016, , .		0