Yifang Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7126268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A thermodynamic description of the Al–Fe–Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics, 2008, 16, 554-570.	3.9	177
2	Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection. Nano Energy, 2021, 81, 105570.	16.0	100
3	Enhanced photocatalytic activity for water splitting of blue-phase GeS and GeSe monolayers <i>via</i> biaxial straining. Nanoscale, 2019, 11, 2335-2342.	5.6	80
4	Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys. Materials and Design, 2020, 193, 108835.	7.0	68
5	Phase stability of magnesium-rare earth binary systems from first-principles calculations. Journal of Alloys and Compounds, 2011, 509, 6899-6907.	5.5	59
6	Elastic constants of B2-MgRE (REÂ= ÂSc, Y, La–Lu) calculated with first-principles. Solid State Communications, 2008, 148, 314-318.	1.9	54
7	Formation enthalpies of Fe–Al–RE ternary alloys calculated with a geometric model and Miedema's theory. Journal of Alloys and Compounds, 2006, 416, 148-154.	5.5	53
8	Distinct green electroluminescence from lead-free CsCuBr ₂ halide micro-crosses. Chemical Communications, 2019, 55, 4554-4557.	4.1	52
9	Structural evolution of mechanically alloyed nanocrystalline FeAl intermetallics. Journal of Alloys and Compounds, 2008, 455, 207-209.	5.5	50
10	Calculation of the thermodynamic properties of B2 AlRE (RE=Sc, Y, La, Ce–Lu). Physica B: Condensed Matter, 2007, 399, 27-32.	2.7	43
11	Ab initio calculation of the total energy and elastic properties of Laves phase C15 Al2RE (RE=Sc, Y, La,) Tj ETQq1	1 0.7843	14 rgBT /Ov∈
12	Thermodynamic modeling of the V–Si system supported by key experiments. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 320-325.	1.6	40
13	Enthalpies of formation for the Al–Cu–Ni–Zr quaternary alloys calculated via a combined approach of geometric model and Miedema theory. Journal of Alloys and Compounds, 2006, 420, 175-181.	5.5	39
14	Ab initio calculations of mechanical and thermodynamic properties for the B2-based AlRE. Computational Materials Science, 2007, 40, 226-233.	3.0	38
15	First-principles calculations of the thermodynamic and elastic properties of the L1 ₂ -based Al ₃ RE (RE = Sc, Y, La–Lu). International Journal of Materials Research, 2008, 99, 582-588.	0.3	35
16	Molecular dynamics simulation of diffusion bonding of Al–Cu interface. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 065013.	2.0	35
17	The formation and crystallization of amorphous Al65Fe20Zr15. Journal of Non-Crystalline Solids, 2008, 354, 5555-5558.	3.1	33
18	Density-functional theory study of Aln and Alnâ^'1Mg (n=2–17) clusters. Computational and Theoretical Chemistry, 2012, 984, 68-75.	2.5	33

#	Article	IF	CITATIONS
19	Thermodynamic and physical properties of FeAl and Fe3Al: an atomistic study by EAM simulation. Physica B: Condensed Matter, 2012, 407, 4530-4536.	2.7	31
20	Crystallization study of amorphous Al82Fe5Ni5Ce8 alloy. Journal of Alloys and Compounds, 2008, 454, 359-363.	5.5	28
21	Thermodynamic modeling of the Cu–Mn system supported by key experiments. Journal of Alloys and Compounds, 2008, 457, 233-238.	5.5	27
22	Structure and thermodynamics of the key precipitated phases in the Al–Mg–Si alloys from first-principles calculations. Journal of Materials Science, 2011, 46, 7839-7849.	3.7	26
23	Structure, elastic and thermodynamic properties of the Ni–P system from first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 284-291.	1.6	25
24	An experimental study on the interdiffusion behaviors and mechanical properties of Ni-Zr system. Journal of Alloys and Compounds, 2018, 752, 412-419.	5.5	24
25	Investigation of diffusion behavior and mechanical properties of Mg-Zn system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 65, 204-211.	1.6	24
26	Extended solid solubility for Al-W binary system by mechanical alloying. Science in China Series A: Mathematics, 2000, 43, 180-184.	0.5	23
27	First-principles calculations of mechanical and thermodynamic properties of the Laves C15-Mg2RE (RE=La, Ce, Pr, Nd, Pm, Sm, Gd). Computational Materials Science, 2009, 47, 297-301.	3.0	23
28	Strengthening by the percolating intergranular eutectic in an HPDC Mg–Ce alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 599, 204-211.	5.6	23
29	Diffusional behaviors and mechanical properties of Cu–Zn system. Journal of Alloys and Compounds, 2020, 812, 152141.	5.5	23
30	Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer. Applied Physics Letters, 2014, 105, 063505.	3.3	22
31	Contribution on the phase equilibria in Zr–Nb–Fe system. Journal of Nuclear Materials, 2015, 466, 627-633.	2.7	21
32	Thermodynamic optimization of the Cu–Nd system. Journal of Alloys and Compounds, 2011, 509, 2679-2683.	5.5	20
33	Structural, electronic and elastic properties of V5Si3 phases from first-principles calculations. Computational Materials Science, 2012, 53, 169-174.	3.0	20
34	Interdiffusion behaviors and mechanical properties of Cu-Zr system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 61, 92-97.	1.6	19
35	The effect of Ti atom on hydrogenation of Al(111) surface: First-principles studies. International Journal of Hydrogen Energy, 2010, 35, 609-613.	7.1	18
36	The structural stability, elastic constants and electronic structure of Al–Sr intermetallics by first-principles calculations. Physica B: Condensed Matter, 2011, 406, 3681-3686.	2.7	18

#	Article	IF	CITATIONS
37	Analytic embedded-atom potentials for bcc metals: application to calculating the thermodynamic data of bcc alloys. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 192, 79-86.	2.1	17
38	First-principles study of binary special quasirandom structures for the Al–Cu, Al–Si, Cu–Si, and Mg–Si systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 769-773.	1.6	17
39	First-principles investigations of elastic, electronic and thermodynamic properties of Al12X (XÂ=ÂMo, W) Tj ETQq	l 1 0.7843 3.9	14 rgBT /O
40	Diffusivities and atomic mobilities for fcc Cu–Ni–Sn alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 59, 84-89.	1.6	17
41	First principle study of AlX (X=3d,4d,5d elements and Lu) dimer. Journal of Chemical Physics, 2008, 128, 074305.	3.0	15
42	Nano-amorphous (FeAl)1â^'xZrx alloys prepared by mechanical alloying. Journal of Alloys and Compounds, 2006, 421, 314-318.	5.5	14
43	Highly Efficient Polarized GeS/MoSe ₂ van der Waals Heterostructure for Water Splitting from Ultraviolet to Nearâ€Infrared Light. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900582.	2.4	14
44	Diffusional behaviors and mechanical properties of Ni-Zn system. Journal of Alloys and Compounds, 2021, 881, 160581.	5.5	14
45	Phase equilibria of the Ni–Ti–Ta system at 927°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 448, 210-215.	5.6	13
46	First-principles calculations of elastic constants of DO ₃ -Mg ₃ RE (RE = Sc, Y, La,) Tj ETQq	0.0 0 rgBT 2.5	/Overlock 1 13
47	First-principles investigation of the thermo-physical properties of Ca3Si4. Journal of Solid State Chemistry, 2012, 194, 179-187.	2.9	13
48	Phase stability, thermodynamic and mechanical properties of AlZr2, FeZr2 and Al2FeZr6 from first-principles calculations. Journal of Nuclear Materials, 2013, 440, 6-10.	2.7	13
49	The mechanical, electronic structure and thermodynamic properties of B2-based AgRE studied from first-principles. Physica Scripta, 2011, 83, 045301.	2.5	12
50	First-principles calculations of elastic and thermo-physical properties of Al, Mg and rare earth lanthanide elements. Physica B: Condensed Matter, 2009, 404, 2299-2304.	2.7	11
51	Elastic, phonon and thermodynamic properties of Mg–Ga compounds from first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 37, 137-144.	1.6	11
52	Formation enthalpies of Al–Fe–Zr–Nd system calculated by using geometric and Miedema's models. Physica B: Condensed Matter, 2015, 463, 82-87.	2.7	11
53	Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations. Journal of Solid State Chemistry, 2016, 237, 385-393.	2.9	11

#	Article	IF	CITATIONS
55	Two-dimensional polarized MoTe ₂ /GeS heterojunction with an intrinsic electric field for photocatalytic water-splitting. RSC Advances, 2021, 11, 34048-34058.	3.6	11
56	(FeAl3)1â^'xZrx amorphous alloys prepared by mechanical alloying. Physica B: Condensed Matter, 2007, 391, 380-384.	2.7	10
57	An interatomic potential for simulation of defects and phase change of zirconium. Computational Materials Science, 2018, 147, 7-17.	3.0	10
58	Toward near-white electroluminescence with enhanced blue emission from carbon dots in PEDOT:PSS/ZnO organic/inorganic hybrid heterojunctions. Journal of Luminescence, 2020, 224, 117230.	3.1	10
59	Preparation of iron-tungsten-boron alloy deposits by electroless plating. Metal Finishing, 1996, 94, 31-35.	0.0	9
60	Crystallization of Al ₂ FeZr ₆ Amorphous Alloy Prepared by Mechanical Alloying. Materials Transactions, 2006, 47, 388-391.	1.2	9
61	Low-voltage multicolor electroluminescence from all-inorganic carbon dots/Si-heterostructured light-emitting diodes. Journal of Materials Science, 2019, 54, 8492-8503.	3.7	9
62	Suggest a new approach to fabricate AlFe2B2. Computational Materials Science, 2020, 171, 109239.	3.0	9
63	Interdiffusion behaviors and mechanical properties of Zn–Cr system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102308.	1.6	9
64	Development of a modified embedded atom method for bcc transition metals. Journal of Physics Condensed Matter, 2003, 15, 8917-8926.	1.8	8
65	Mechanical Alloying of Fe ₂₅ Al _{75−<i>x</i>} Ti _{<i>x</i>} Mixed Powders. Materials Transactions, 2004, 45, 1774-1777.	1.2	8
66	Density functional study of 3d-transition metal aluminides. Computational and Theoretical Chemistry, 2009, 905, 106-112.	1.5	8
67	Atomic parameter model for the solid solubilities in binary transition metal based alloys. Indian Journal of Physics, 2011, 85, 261-270.	1.8	8
68	Surface energy and surface self-diffusion of Al calculated by embedded atom method. Physica B: Condensed Matter, 2013, 422, 51-55.	2.7	8
69	First-principles investigation of the mechanical, electronic and thermophysical properties of Q-phase in Al–Mg–Si–Cu alloys. Computational Materials Science, 2013, 67, 334-340.	3.0	8
70	Experimental Investigation on Phase Equilibria of Al-Fe-Y System at 773ÂK. Journal of Phase Equilibria and Diffusion, 2014, 35, 256-261.	1.4	8
71	Boosted electroluminescence of perovskite light-emitting diodes by pinhole passivation with insulating polymer. Journal Physics D: Applied Physics, 2018, 51, 405103.	2.8	8
72	The elastic constants for Fe ₃ AlX (X=B, C and N) with anti-perovskite structure. Physica Scripta, 2009, 80, 055603.	2.5	7

#	Article	IF	CITATIONS
73	Investigation of thermophysical, electronic and lattice dynamic properties for CaX2Si2 (X=Ni,Zn,Cu,Ag,Au) via first-principles calculations. Computational Materials Science, 2015, 102, 167-173.	3.0	7
74	Toward near-white-light electroluminescence from n-ZnO nanocrystals/n-Si isotype heterojunctions via an AZO spectral scissor. Optics Express, 2017, 25, 19004.	3.4	7
75	Interdiffusion behaviors and mechanical properties in BCC Zr-rich Zr–Nb–Ta system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 77, 102410.	1.6	7
76	Theoretical study of spectroscopic parameters of alkali -Al and alkaline earth-Al dimers. Theoretical Chemistry Accounts, 2008, 121, 165-172.	1.4	6
77	Experimental investigation on phase equilibria of Ce-Sn-Zn system at 400 °C. Journal of Rare Earths, 2012, 30, 916-922.	4.8	6
78	Electronic calculation of Mn3AlN with anti-perovskite structure. Computational Materials Science, 2008, 44, 97-101.	3.0	5
79	Enhanced electroluminescence from n-ZnO NCs/n-Si isotype heterojunctions by using i-NiO as electron blocking layer. Journal of Luminescence, 2018, 204, 5-9.	3.1	5
80	Strain Enhanced Visible–Ultraviolet Absorption of Blue Phosphorene/MoX 2 (X = S,Se) Heterolayers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800659.	2.4	5
81	Interdiffusion behaviors and mechanical properties of Zr-X (X Nb, Ta, Hf) binary systems. Journal of Alloys and Compounds, 2022, 910, 164910.	5.5	5
82	The compositional range of amorphous phase formation and thermal stability of Al90â^'xFe5Ni5Cex. Journal of Alloys and Compounds, 2008, 460, 309-313.	5.5	4
83	The atomic parameter model for the fifth and sixth transition metal quasicrystal alloys (Mc=0.5). Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 1593-1600.	0.2	4
84	The formation and crystallization for amorphous AlFeZr4 prepared by mechanical alloying. Physica B: Condensed Matter, 2010, 405, 2005-2008.	2.7	4
85	Experimental Investigation of the Al-Fe-Nd System at 773ÂK. Journal of Phase Equilibria and Diffusion, 2014, 35, 86-92.	1.4	4
86	Improving and manipulating green-light electroluminescence in solution-processed ZnO nanocrystals via erbium doping. Journal of Luminescence, 2019, 213, 127-132.	3.1	4
87	Stability and physical properties tuning via interstitials chemical engineering of Zr5Sn3: a first-principles study. Journal of Materials Science, 2019, 54, 10284-10296.	3.7	4
88	Phase Stability and Mechanical Properties of Al8Fe4RE via First-Principle Calculations. Materials, 2019, 12, 701.	2.9	4
89	Molecular dynamics simulation of diffusion for Ni–Zr interface. International Journal of Modern Physics B, 2020, 34, 2050217.	2.0	4
90	Structure and stability of Al–Fe–Zr–Ce cluster: density functional study. Theoretical Chemistry Accounts, 2010, 127, 651-659.	1.4	3

#	Article	IF	CITATIONS
91	Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations. International Journal of Materials Research, 2010, 101, 1392-1397.	0.3	3
92	Experimental Investigation of the Al-Fe-Gd System at 773ÂK. Journal of Phase Equilibria and Diffusion, 2013, 34, 116-121.	1.4	3
93	The effect of grain boundary energy on the amorphous forming composition range of Zr–Fe–Al ternary system. Journal of Non-Crystalline Solids, 2016, 432, 277-284.	3.1	3
94	The effect of Al content on the structural, mechanical, and thermal properties of B2-FeAl and D0 ₃ -Fe ₃ Al from atomistic study. Materials Research Express, 2018, 5, 026512.	1.6	3
95	Model Equations for Solid Solubilities in Binary Non-Transition Metal Based Alloys. Materials Transactions, JIM, 1997, 38, 589-594.	0.9	2
96	Size and composition dependence of melting temperature of binary nanoparticles. Science China: Physics, Mechanics and Astronomy, 2011, 54, 897-900.	5.1	2
97	Lattice dynamics properties of XAs (X=Al, Ga and In) with zinc-blende structure from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73, 1034-1039.	4.0	2
98	Isothermal Section of theÂAl-Zn-RE (REÂ=ÂHo, Er) Systems at 450°C. Journal of Phase Equilibria and Diffusion, 2016, 37, 658-663.	1.4	2
99	The Isothermal Section of the Zr-Sn-Cu Ternary System at 700°C. Journal of Phase Equilibria and Diffusion, 2018, 39, 196-203.	1.4	2
100	Codoping Erâ€N to Suppress Selfâ€Compensation Donors for Stablepâ€Type Zinc Oxide. Advanced Theory and Simulations, 2019, 2, 1800133.	2.8	2
101	The electronic, mechanical and lattice dynamic properties of TiSiY from first-principles calculations. Computational Materials Science, 2012, 65, 485-489.	3.0	1
102	Polarization Electric Field in 2D Polar Monolayer Silicon Monochalcogenides SiX (X = S, Se) as Potential Photocatalysts for Water Splitting. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	2.4	1