Arlin Jose Amali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125759/publications.pdf

Version: 2024-02-01

27 1,165 16 26 g-index

28 28 28 2155

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chemical Communications, 2014, 50, 1519-1522.	4.1	329
2	Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki–Miyaura reactions. Green Chemistry, 2009, 11, 1781.	9.0	182
3	A Biomimetic Iron Catalyst for the Epoxidation of Olefins with Molecular Oxygen at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 1425-1429.	13.8	118
4	From Metal–Organic Framework to Intrinsically Fluorescent Carbon Nanodots. Chemistry - A European Journal, 2014, 20, 8279-8282.	3.3	68
5	PdPt Nanocubes: A Highâ€Performance Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. Particle and Particle Systems Characterization, 2013, 30, 888-892.	2.3	56
6	Trapping Pd(0) in nanoparticle-assembled microcapsules: an efficient and reusable catalyst. Chemical Communications, 2008, , 4165.	4.1	46
7	Fabrication of Pd Nanoparticles Embedded C@Fe ₃ O ₄ Core–Shell Hybrid Nanospheres: An Efficient Catalyst for Cyanation in Aryl Halides. ACS Applied Materials & Interfaces, 2015, 7, 22907-22917.	8.0	43
8	Nanoparticle assembled microcapsules for application as pH and ammonia sensor. Analytica Chimica Acta, 2011, 708, 75-83.	5.4	40
9	Ultrafine Bimetallic PdCo Alloy Nanoparticles on Hollow Carbon Capsules: An Efficient Heterogeneous Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 491-500.	6.7	31
10	Tailored Anisotropic Magnetic Chain Structures Hierarchically Assembled from Magnetoresponsive and Fluorescent Components. Angewandte Chemie - International Edition, 2011, 50, 1318-1321.	13.8	28
11	Enzyme-Free Multiplex Detection of <i>Pseudomonas aeruginosa </i> and <i>Aeromonas hydrophila </i> with Ferrocene and Thionine-Labeled Antibodies Using ZIF-8/Au NPs as a Platform. ACS Omega, 2018, 3, 17010-17022.	3.5	27
12	Isolable C@Fe3O4 nanospheres supported cubical Pd nanoparticles as reusable catalysts for Stille and Mizoroki-Heck coupling reactions. Tetrahedron Letters, 2017, 58, 3276-3282.	1.4	25
13	Cubical Palladium Nanoparticles on C@Fe3O4 for Nitro reduction, Suzuki-Miyaura Coupling and Sequential Reactions. Journal of Molecular Catalysis A, 2016, 423, 511-519.	4.8	24
14	Poly(<scp>l</scp> -Lysine)–pyranine-3 coacervate mediated nanoparticle-assembly: fabrication of dynamic pH-responsive containers. Chemical Communications, 2012, 48, 856-858.	4.1	20
15	Mesoporous Microcapsules through <scp>d</scp> -Glucose Promoted Hydrothermal Self-Assembly of Colloidal Silica: Reusable Catalytic Containers for Palladium Catalyzed Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 667-674.	6.7	20
16	Preparation and photophysics of HPTS-based nanoparticle-assembled microcapsules. Journal of Materials Chemistry, 2009, 19, 4017.	6.7	16
17	Co/Coâ€N@Nanoporous Carbon Derived from ZIFâ€67: A Highly Sensitive and Selective Electrochemical Dopamine Sensor. Electroanalysis, 2018, 30, 2475-2482.	2.9	16
18	Assembly of Multiple Components in a Hybrid Microcapsule: Designing a Magnetically Separable Pd Catalyst for Selective Hydrogenation. Chemistry - A European Journal, 2014, 20, 12239-12244.	3.3	14

#	Article	IF	CITATIONS
19	Experimental charge density distribution and its correlation toÂstructural and optical properties of Sm 3+ doped Nd 2 O 3 nanophosphors. Journal of Rare Earths, 2017, 35, 1102-1114.	4.8	14
20	Heterogenization of cobalt nanoparticles on hollow carbon capsules: Lab-in-capsule for catalytic transfer hydrogenation of carbonyl compounds. Molecular Catalysis, 2018, 448, 153-161.	2.0	11
21	Confinement of Cu ^{II} –Phthalocyanine in a Bioinspired Hybrid Nanoparticleâ€Assembled Structure Yields Selective and Stable Epoxidation Catalysts. Chemistry - A European Journal, 2014, 20, 8453-8457.	3.3	9
22	CeO ₂ /Pd Nanoparticles Incorporated Fly Ash Zeolite: An Efficient and Recyclable Catalyst for C _{sp} ² Bond Formation Reactions. Applied Organometallic Chemistry, 2020, 34, e5752.	3.5	8
23	Formation of fractals by the self-assembly of interpolymer adducts of polymethacrylic acid with complementary polymers in aqueous solution. Journal of Chemical Sciences, 2012, 124, 375-383.	1.5	6
24	Palladium Nanoparticles Incorporated Thiazoline Functionalized Periodic Mesoporous Organosilica: Efficient Catalyst for Selective Hydrogenation & C sp 2 â^'C sp 2 Bond Formation Reactions. ChemistrySelect, 2020, 5, 6131-6140.	1.5	3
25	A novel synthesis of orange-red emitting (Sm1â^xCex)2O3nanophosphors for UV LEDs. Nano Structures Nano Objects, 2018, 13, 51-58.	3.5	2
26	Photoluminescence study of (Sm0.95 Ce0.05)2O3 nanoparticles for LED applications. AIP Conference Proceedings, 2019, , .	0.4	0
27	Bifunctional Platinum Tetrapods: Highâ€Performance Catalyst for Hydrogenation of Aromatic Nitro Compounds and Electrochemical Sensor for Hydrazine ChemistrySelect, 2019, 4, 12117-12123.	1.5	0