David Bass

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. Journal of Eukaryotic Microbiology, 2019, 66, 4-119.	0.8	904
2	The Pathobiome in Animal and Plant Diseases. Trends in Ecology and Evolution, 2019, 34, 996-1008.	4.2	208
3	Diverse Applications of Environmental DNA Methods in Parasitology. Trends in Parasitology, 2015, 31, 499-513.	1.5	179
4	Understanding the role of the shrimp gut microbiome in health and disease. Journal of Invertebrate Pathology, 2021, 186, 107387.	1.5	144
5	Clarifying the Relationships between Microsporidia and Cryptomycota. Journal of Eukaryotic Microbiology, 2018, 65, 773-782.	0.8	98
6	Differences in soil microâ€eukaryotic communities over soil <scp>pH</scp> gradients are strongly driven by parasites and saprotrophs. Environmental Microbiology, 2016, 18, 2010-2024.	1.8	94
7	Longâ€read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Molecular Ecology Resources, 2020, 20, 429-443.	2.2	68
8	Making sense of environmental sequencing data: Ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Molecular Ecology Resources, 2020, 20, 398-403.	2.2	66
9	Debugging diversity – a panâ€continental exploration of the potential of terrestrial bloodâ€feeding leeches as a vertebrate monitoring tool. Molecular Ecology Resources, 2018, 18, 1282-1298.	2.2	45
10	Coprophilic amoebae and flagellates, including Guttulinopsis, Rosculus and Helkesimastix, characterise a divergent and diverse rhizarian radiation and contribute to a large diversity of faecalâ€associated protists. Environmental Microbiology, 2016, 18, 1604-1619.	1.8	42
11	A new phylogeny and environmental DNA insight into paramyxids: an increasingly important but enigmatic clade of protistan parasites of marine invertebrates. International Journal for Parasitology, 2016, 46, 605-619.	1.3	39
12	pr2â€primers: An 18S rRNA primer database for protists. Molecular Ecology Resources, 2022, 22, 168-179.	2.2	39
13	Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (<i>Homarus gammarus</i>). ISME Journal, 2020, 14, 531-543.	4.4	35
14	Iceâ€lce disease: An environmentally and microbiologically driven syndrome in tropical seaweed aquaculture. Reviews in Aquaculture, 2022, 14, 414-439.	4.6	33
15	Microeukaryotes in animal and plant microbiomes: Ecologies of disease?. European Journal of Protistology, 2020, 76, 125719.	0.5	30
16	Rhizarian â€~Novel Clade 10' Revealed as Abundant and Diverse Planktonic and Terrestrial Flagellates, including <i>Aquavolon</i> n. gen Journal of Eukaryotic Microbiology, 2018, 65, 828-842.	0.8	29
17	Parahepatospora carcini n. gen., n. sp., a parasite of invasive Carcinus maenas with intermediate features of sporogony between the Enterocytozoon clade and other microsporidia. Journal of Invertebrate Pathology, 2017, 143, 124-134.	1.5	26
18	Reticulamoeba Is a Long-Branched Granofilosean (Cercozoa) That Is Missing from Sequence Databases. PLoS ONE, 2012, 7, e49090.	1.1	24

DAVID BASS

#	Article	IF	CITATIONS
19	Environmental Sequencing Fills the Gap Between Parasitic Haplosporidians and Freeâ€living Giant Amoebae. Journal of Eukaryotic Microbiology, 2018, 65, 574-586.	0.8	21
20	Ascetosporea. Current Biology, 2019, 29, R7-R8.	1.8	19
21	Parasites, pathogens, and other symbionts of copepods. Trends in Parasitology, 2021, 37, 875-889.	1.5	19
22	Revised Taxonomy and Expanded Biodiversity of the Phytomyxea (Rhizaria, Endomyxa). Journal of Eukaryotic Microbiology, 2020, 67, 648-659.	0.8	16
23	The first clawed lobster virus Homarus gammarus nudivirus (HgNV n. sp.) expands the diversity of the Nudiviridae. Scientific Reports, 2019, 9, 10086.	1.6	15
24	Phylogenetic Estimation of Community Composition and Novel Eukaryotic Lineages in Base Mine Lake: An Oil Sands Tailings Reclamation Site in Northern Alberta. Journal of Eukaryotic Microbiology, 2020, 67, 86-99.	0.8	14
25	Improved high throughput protocol for targeting eukaryotic symbionts in metazoan and eDNA samples. Molecular Ecology Resources, 2022, 22, 664-678.	2.2	9
26	<i>Txikispora philomaios</i> n. sp., n. g., a microâ€eukaryotic pathogen of amphipods, reveals parasitism and hidden diversity in Class Filasterea. Journal of Eukaryotic Microbiology, 2022, 69, e12875.	0.8	6
27	Identifying Potential Hosts of Short-Branch Microsporidia. Microbial Ecology, 2021, 82, 549-553.	1.4	4