Jean-Michel Becht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/712538/publications.pdf Version: 2024-02-01

IEAN-MICHEL RECHT

#	Article	IF	CITATIONS
1	Palladium nanoparticles embedded in mesoporous carbons as efficient, green and reusable catalysts for mild hydrogenations of nitroarenes. RSC Advances, 2020, 10, 36741-36750.	3.6	9
2	Mesoporous carbon supported ultrasmall palladium particles as highly active catalyst for Suzukiâ€Miyaura reaction. Applied Organometallic Chemistry, 2019, 33, e5104.	3.5	10
3	Green reusable Pd nanoparticles embedded in phytochemical resins for mild hydrogenations of nitroarenes. New Journal of Chemistry, 2019, 43, 17383-17389.	2.8	6
4	In Situ Generated Ruthenium–Arene Catalyst for Photoactivated Ringâ€Opening Metathesis Polymerization through Photolatent Nâ€Heterocyclic Carbene Ligand. Chemistry - A European Journal, 2018, 24, 337-341.	3.3	22
5	Reusable magnetic Pd _x Co _y nanoalloys confined in mesoporous carbons for green Suzuki–Miyaura reactions. RSC Advances, 2018, 8, 17176-17182.	3.6	13
6	A green direct preparation of a magnetic ordered mesoporous carbon catalyst containing Fe–Pd alloys: application to Suzuki–Miyaura reactions in propane-1,2-diol. New Journal of Chemistry, 2017, 41, 4931-4936.	2.8	10
7	Structural investigation of cyclo-dioxo maleimide cross-linkers for acid and serum stability. Organic and Biomolecular Chemistry, 2017, 15, 9305-9310.	2.8	12
8	Biosourced mesoporous carbon with embedded palladium nanoparticles by a one pot soft-template synthesis: application to Suzuki reactions. Journal of Materials Chemistry A, 2015, 3, 12297-12306.	10.3	22
9	A Palladium Catalyst Supported on Carbonâ€Coated Cobalt Nanoparticles – Preparation of Palladiumâ€Free Biaryls by Suzuki–Miyaura Reactions in Ethanol. European Journal of Organic Chemistry, 2014, 2014, 7699-7706.	2.4	14
10	A bifunctional palladated rasta resin for Mizoroki–Heck reactions. Tetrahedron Letters, 2014, 55, 4331-4333.	1.4	5
11	Mizoroki–Heck reactions of methyl acrylate in presence of a palladated rasta resin. Tetrahedron Letters, 2013, 54, 4207-4209.	1.4	10
12	A simple and efficient reusable polystyrene-supported palladium catalyst forÂHiyama cross-coupling. Tetrahedron, 2013, 69, 264-267.	1.9	26
13	An Efficient and Reusable Palladium Catalyst Supported on a Rasta Resin for Suzuki–Miyaura Cross ouplings. European Journal of Organic Chemistry, 2012, 2012, 893-896.	2.4	28
14	Formation of Carbon–Sulfur and Carbon–Selenium Bonds by Palladium-Catalyzed Decarboxylative Cross-Couplings of Hindered 2,6-Dialkoxybenzoic Acids. Journal of Organic Chemistry, 2011, 76, 6327-6330.	3.2	63
15	Highly efficient reusable polymer-supported Pd catalysts of general use for the Suzuki reaction. Tetrahedron, 2010, 66, 765-772.	1.9	88
16	Reusable polystyrene-supported Pd catalyst for Mizoroki–Heck reactions with extremely low amounts of supported Pd. Organic and Biomolecular Chemistry, 2010, 8, 4834.	2.8	31
17	Biaryl Synthesis via Decarboxylative Pd-Catalyzed Reactions of Arenecarboxylic Acids and Diaryliodonium Triflates. Organic Letters, 2008, 10, 3161-3164.	4.6	141
18	Synthesis of Biaryls via Decarboxylative Pd-Catalyzed Cross-Coupling Reaction. Organic Letters, 2007, 9, 1781-1783.	4.6	208

#	ARTICLE	IF	CITATIONS
19	Highly Efficient and Reusable Supported Pd Catalysts for Suzukiâ^'Miyaura Reactions of Aryl Chlorides. Organic Letters, 2007, 9, 3777-3780.	4.6	82
20	Development of Efficient and Reusable Diarylphosphinopolystyrene-Supported Palladium Catalysts for CC Bond Forming Cross-Coupling Reactions. Advanced Synthesis and Catalysis, 2007, 349, 1150-1158.	4.3	61
21	Short and efficient preparations of isoxazole-3-carboxylic acid and imino-oxopentanoic acid potent precursors of 4-hydroxyisoleucine. Tetrahedron, 2006, 62, 4430-4434.	1.9	10