Helmuth Haak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125318/publications.pdf

Version: 2024-02-01

		172386	197736
51	8,057 citations	29	49
papers	citations	h-index	g-index
5 2	5 0	F.2	7701
53	53	53	7791
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	16
2	Air $\hat{a} \in S$ ea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	7
3	What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?. Climate Dynamics, 2021, 56, 155-187.	1.7	29
4	The German Climate Forecast System: GCFS. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002101.	1.3	30
5	Effect of Resolving Ocean Eddies on the Transient Response of Global Mean Surface Temperature to Abrupt 4xCO ₂ Forcing. Geophysical Research Letters, 2021, 48, e2020GL092049.	1.5	1
6	Comparison of ocean vertical mixing schemes in the Max Planck Institute Earth System Model (MPI-ESM1.2). Geoscientific Model Development, 2021, 14, 2317-2349.	1.3	11
7	Response of Northern North Atlantic and Atlantic Meridional Overturning Circulation to Reduced and Enhanced Wind Stress Forcing. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017902.	1.0	6
8	Surface Flux Drivers for the Slowdown of the Atlantic Meridional Overturning Circulation in a Highâ€Resolution Global Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 1349-1363.	1.3	11
9	Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 2019, 12, 3241-3281.	1.3	201
10	Developments in the MPlâ€M Earth System Model version 1.2 (MPlâ€ESM1.2) and Its Response to Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2019, 11, 998-1038.	1.3	582
11	Arctic Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance. Cryosphere, 2018, 12, 2569-2594.	1.5	13
12	A Higherâ€resolution Version of the Max Planck Institute Earth System Model (MPlâ€ESM1.2â€HR). Journal of Advances in Modeling Earth Systems, 2018, 10, 1383-1413.	1.3	272
13	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	1.3	223
14	The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO& t;sub>2& t;/sub> forcing. Geoscientific Model Development, 2016, 9, 3993-4017.	1.3	133
15	Vertical heat and salt fluxes due to resolved and parameterized meso-scale Eddies. Ocean Modelling, 2016, 108, 1-19.	1.0	29
16	High atmospheric horizontal resolution eliminates the windâ€driven coastal warm bias in the southeastern tropical Atlantic. Geophysical Research Letters, 2016, 43, 10,455.	1.5	34
17	Controlling high-latitude Southern Ocean convection in climate models. Ocean Modelling, 2015, 86, 58-75.	1.0	30
18	A twentieth-century reanalysis forced ocean model to reconstruct the North Atlantic climate variation during the 1920s. Climate Dynamics, 2015, 44, 1935-1955.	1.7	26

#	Article	IF	CITATIONS
19	The influence of highâ€resolution wind stress field on the power input to nearâ€inertial motions in the ocean. Geophysical Research Letters, 2013, 40, 4882-4886.	1.5	114
20	Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPlâ€Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5, 422-446.	1.3	574
21	Climate and carbon cycle changes from 1850 to 2100 in MPIâ€ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 2013, 5, 572-597.	1.3	1,280
22	Arctic seaâ€ice evolution as modeled by Max Planck Institute for Meteorology's Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5, 173-194.	1.3	110
23	Revisiting the <i>Meteor</i> 1925–1927 hydrographic dataset reveals centennial fullâ€depth changes in the Atlantic Ocean. Geophysical Research Letters, 2013, 40, 2236-2241.	1.5	3
24	Two Tales of Initializing Decadal Climate Prediction Experiments with the ECHAM5/MPI-OM Model. Journal of Climate, 2012, 25, 8502-8523.	1.2	139
25	An Estimate of the Lorenz Energy Cycle for the World Ocean Based on the STORM/NCEP Simulation. Journal of Physical Oceanography, 2012, 42, 2185-2205.	0.7	219
26	Tuning the climate of a global model. Journal of Advances in Modeling Earth Systems, 2012, 4, .	1.3	334
27	Forecast skill of multiâ€year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophysical Research Letters, 2012, 39, .	1.5	67
28	Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at $26.5 \hat{A}^{\circ}N$. Science, $2012, 335, 76-79$.	6.0	79
29	Effects of the Changjiang river discharge on sea surface warming in the Yellow and East China Seas in summer. Continental Shelf Research, 2011, 31, 15-22.	0.9	54
30	Climate and carbon-cycle variability over the last millennium. Climate of the Past, 2010, 6, 723-737.	1.3	284
31	The effect of ocean tides on a climate model simulation. Ocean Modelling, 2010, 35, 304-313.	1.0	47
32	Observed and simulated estimates of the meridional overturning circulation at $26.5 \hat{A}^{\circ}$ N in the Atlantic. Ocean Science, 2009, 5, 575-589.	1.3	31
33	Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 2009, 26, 1-46.	1.0	573
34	Timely Detection of Changes in the Meridional Overturning Circulation at $26\hat{A}^{\circ}N$ in the Atlantic. Journal of Climate, 2007, 20, 5827-5841.	1,2	34
35	Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM. Journal of Climate, 2006, 19, 3952-3972.	1.2	788
36	Gulf Stream Variability in Five Oceanic General Circulation Models. Journal of Physical Oceanography, 2006, 36, 2119-2135.	0.7	57

#	Article	IF	CITATIONS
37	Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model. Climate Dynamics, 2006, 26, 17-34.	1.7	58
38	Arctic–North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation. Journal of Climate, 2005, 18, 4013-4031.	1.2	230
39	Reconstructing, Monitoring, and Predicting Multidecadal-Scale Changes in the North Atlantic Thermohaline Circulation with Sea Surface Temperature. Journal of Climate, 2004, 17, 1605-1614.	1.2	257
40	The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 2003, 5, 91-127.	1.0	856
41	Scanning-tunneling-microscopy and photoemission study of an alkali-metal-induced structural phase transition: Si(111)-(7×7) into Si(111)-Na(3×1). Physical Review B, 1995, 52, 5813-5823.	1.1	45
42	The Ba/Si(100)-2 × 1 interface. Surface Science, 1992, 260, 102-112.	0.8	21
43	Photoemission study of the upper limit to the change of the local exchange splitting at finite temperature. Physical Review B, 1991, 43, 3259-3264.	1.1	3
44	Photoemission investigation of the electronic structure of Fe-Pd and Fe-Pt alloys. Physical Review B, 1991, 43, 8903-8910.	1.1	25
45	Investigation of the bulk band structure of IV-VI compound semiconductors: PbSe and PbTe. Physical Review B, 1989, 40, 5549-5556.	1.1	40
46	Thermal effects in aluminium-semiconductor interface formation. Vacuum, 1988, 38, 329-332.	1.6	2
47	Electronic structure of Fe, Co, and Ni impurities in Pd. Physical Review B, 1988, 38, 10463-10467.	1.1	18
48	Dependence of core-level photoemission spectra on overlayer growth mode: Al on InP(110). Physical Review B, 1988, 38, 6330-6333.	1.1	12
49	Response to â€~â€~Comment on â€~Evidence for Si diffusion through epitaxial NiSi2grown on Si(111)' â€ Phys. Lett.52, 2269 (1988)]. Applied Physics Letters, 1988, 52, 2269-2269.	™â€™ [A _l	ppl.
50	Evidence for Si diffusion through epitaxial NiSi2grown on Si(111). Applied Physics Letters, 1987, 50, 1257-1259.	1.5	40
51	Sea level changes mechanisms in the MPI-ESM under FAFMIP forcing conditions. Climate Dynamics, $0, 1$.	1.7	1