Krzysztof Noworyta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125159/publications.pdf

Version: 2024-02-01

66	1,645	24 h-index	39
papers	citations		g-index
69	69	69	1878 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis. Nanomaterials, 2022, 12, 442.	1.9	3
2	Molecularly imprinted polymer-based extended-gate field-effect transistor (EG-FET) chemosensor for selective determination of matrix metalloproteinase-1 (MMP-1) protein. Biosensors and Bioelectronics, 2022, 208, 114203.	5 . 3	27
3	Polytyramine Film-Coated Single-Walled Carbon Nanotube Electrochemical Chemosensor with Molecularly Imprinted Polymer Nanoparticles for Duloxetine-Selective Determination in Human Plasma. ACS Sensors, 2022, 7, 1829-1836.	4.0	5
4	Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film. Bioelectrochemistry, 2021, 138, 107695.	2.4	26
5	Electrochemical impedance spectroscopy studies of gasoline oxidative stability – Attempt to devise new gasolines chemical stability index. Fuel, 2021, 288, 119620.	3.4	3
6	Self-Reporting Molecularly Imprinted Polymer with Covalently Immobilized Ferrocene Redox Probe for Selective Electrochemical Sensing of P-Synephrine. ECS Meeting Abstracts, 2021, MA2021-01, 1368-1368.	0.0	0
7	Self-reporting molecularly imprinted polymer with the covalently immobilized ferrocene redox probe for selective electrochemical sensing of p-synephrine. Sensors and Actuators B: Chemical, 2021, 344, 130276.	4.0	19
8	Molecularly imprinted polymer nanoparticles-based electrochemical chemosensors for selective determination of cilostazol and its pharmacologically active primary metabolite in human plasma. Biosensors and Bioelectronics, 2021, 193, 113542.	5 . 3	13
9	Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate. Nanomaterials, 2021, 11, 2659.	1.9	4
10	Selective Impedimetric Chemosensing of Carcinogenic Heterocyclic Aromatic Amine in Pork by dsDNA-Mimicking Molecularly Imprinted Polymer Film-Coated Electrodes. Journal of Agricultural and Food Chemistry, 2021, 69, 14689-14698.	2.4	7
11	Cilostazol-imprinted polymer film-coated electrode as an electrochemical chemosensor for selective determination of cilostazol and its active primary metabolite. Journal of Materials Chemistry B, 2021, , .	2.9	1
12	Low-oxidation-potential thiophene-carbazole monomers for electro-oxidative molecular imprinting: Selective chemosensing of aripiprazole. Biosensors and Bioelectronics, 2020, 169, 112589.	5 . 3	15
13	Protein Determination with Molecularly Imprinted Polymer Recognition Combined with Birefringence Liquid Crystal Detection. Sensors, 2020, 20, 4692.	2.1	16
14	Visible-light activation of low-cost rutile TiO2 photoanodes for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2020, 208, 110424.	3.0	13
15	Influence of the heteroatom introduction on the physicochemical properties of 5-heterotruxenes containing nitrogen, oxygen and sulfur atom. RSC Advances, 2020, 10, 42363-42377.	1.7	9
16	Molecularly Imprinted Polymer for Selective Electrosynthesis of Biphenols. ECS Meeting Abstracts, 2020, MA2020-02, 1462-1462.	0.0	0
17	Electrochemically initiated co-polymerization of monomers of different oxidation potentials for molecular imprinting of electroactive analyte. Sensors and Actuators B: Chemical, 2019, 298, 126884.	4.0	16
18	"Gate Effect―in <i>p</i> Synephrine Electrochemical Sensing with a Molecularly Imprinted Polymer and Redox Probes. Analytical Chemistry, 2019, 91, 7546-7553.	3.2	28

#	Article	IF	CITATIONS
19	â€~Gate effect' in molecularly imprinted polymers: the current state of understanding. Current Opinion in Electrochemistry, 2019, 16, 50-56.	2.5	66
20	Selective PQQPFPQQ Gluten Epitope Chemical Sensor with a Molecularly Imprinted Polymer Recognition Unit and an Extended-Gate Field-Effect Transistor Transduction Unit. Analytical Chemistry, 2019, 91, 4537-4543.	3.2	27
21	Application of the Impedance Spectroscopy as a New Tool for Studying Biodiesel Fuel Aging Processes. Energies, 2019, 12, 738.	1.6	7
22	Photovoltaic cells as a highly efficient system for biomedical and electrochemical surface-enhanced Raman spectroscopy analysis. RSC Advances, 2019, 9, 576-591.	1.7	9
23	Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosensors and Bioelectronics, 2018, 109, 50-62.	5.3	25
24	Efficient synthesis of 5-oxatruxene and the unusual influence of oxygen heteroatom on its physico-chemical properties. New Journal of Chemistry, 2018, 42, 5844-5852.	1.4	11
25	Straightforward Synthesis of Single-Crystalline and Redox-Active Cr(II)-carboxylate MOFs. Inorganic Chemistry, 2018, 57, 4803-4806.	1.9	21
26	Synthesis and application of a "plastic antibody―in electrochemical microfluidic platform for oxytocin determination. Biosensors and Bioelectronics, 2018, 100, 251-258.	5.3	39
27	Determination of Asymmetric Dimethylarginine by Using Organic Semiconductor-Based Molecularly Imprinted Polymer Film. ECS Journal of Solid State Science and Technology, 2018, 7, Q3189-Q3195.	0.9	1
28	Programmed Transfer of Sequence Information into a Molecularly Imprinted Polymer for Hexakis(2,2′-bithien-5-yl) DNA Analogue Formation toward Single-Nucleotide-Polymorphism Detection. ACS Applied Materials & Interfaces, 2017, 9, 3948-3958.	4.0	25
29	Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. Biosensors and Bioelectronics, 2017, 94, 155-161.	5.3	47
30	Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing. Journal of Materials Chemistry C, 2017, 5, 969-977.	2.7	46
31	Surface enhancement of a molecularly imprinted polymer film using sacrificial silica beads for increasing <scp>I </scp> -arabitol chemosensor sensitivity and detectability. Journal of Materials Chemistry B, 2017, 5, 6292-6299.	2.9	12
32	Semi-Covalent Imprinting for Selective Protein Sensing at a Femtomolar Concentration Level. Proceedings (mdpi), 2017, 1, .	0.2	0
33	Conducting Molecularly Imprinted Polymer (MIP) Chemical Sensors for Toxic N-Nitrosamines Selective Determination in Heat Processed Food of Animal Origin. ECS Meeting Abstracts, 2017, , .	0.0	0
34	(Invited) Application of Extended-Gate Field-Effect Transistor Sensors with Molecularly Imprinted Polymer Recognition Layers for Determination of Renal Dysfunction Biomarkers. ECS Meeting Abstracts, 2017, , .	0.0	0
35	Inherently Chiral Spiderâ€Like Oligothiophenes. Chemistry - A European Journal, 2016, 22, 10839-10847.	1.7	25
36	Inherently Chiral Spider-Like Oligothiophenes. Chemistry - A European Journal, 2016, 22, 10685-10685.	1.7	0

3

#	Article	IF	CITATIONS
37	Molecularly Imprinted Polymer (MIP) Film with Improved Surface Area Developed by Using Metal–Organic Framework (MOF) for Sensitive Lipocalin (NGAL) Determination. ACS Applied Materials & Lipocalin (NGAL) amp; Interfaces, 2016, 8, 19860-19865.	4.0	61
38	Early diagnosis of fungal infections using piezomicrogravimetric and electric chemosensors based on polymers molecularly imprinted with d-arabitol. Biosensors and Bioelectronics, 2016, 79, 627-635.	5.3	40
39	Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnology Advances, 2016, 34, 30-46.	6.0	100
40	Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosensors and Bioelectronics, 2016, 77, 565-572.	5.3	42
41	Inherently chiral electrodes: the tool for chiral voltammetry. Chemical Science, 2015, 6, 1706-1711.	3.7	76
42	Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosensors and Bioelectronics, 2015, 74, 960-966.	5.3	129
43	Extended-gate field-effect transistor (EG-FET) with molecularly imprinted polymer (MIP) film for selective inosine determination. Biosensors and Bioelectronics, 2015, 74, 526-533.	5.3	39
44	Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5′-triphosphate (ATP). Analytica Chimica Acta, 2014, 844, 61-69.	2.6	32
45	Langmuir–Blodgett Films of Self-Assembled (Alkylether-Derivatized Zn) Tj ETQq1 1 0.784314 rgBT /Overlock 10 for Photoelectrochemical Studies. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8688-8701.	Tf 50 427 4.0	Td (Phthal 13
46	Electrochemically synthesized molecularly imprinted polymer of thiophene derivatives for flow-injection analysis determination of adenosine-5′-triphosphate (ATP). Biosensors and Bioelectronics, 2013, 41, 634-641.	5.3	36
47	Nicotine, Cotinine, and Myosmine Determination Using Polymer Films of Tailor-Designed Zinc Porphyrins as Recognition Units for Piezoelectric Microgravimetry Chemosensors. Analytical Chemistry, 2012, 84, 2154-2163.	3.2	18
48	An effective multipurpose building block for 3D electropolymerisation: 2,2′-Bis(2,2′-bithiophene-5-yl)-3,3′-bithianaphthene. Electrochimica Acta, 2010, 55, 8352-8364.	2.6	29
49	Collective Rotations of Ferroelectric Liquid Crystals at the Air/Water Interface. Langmuir, 2008, 24, 12354-12363.	1.6	11
50	Self Assembling of Porphyrin-Fullerene Dyads in the Langmuir and Langmuir-Blodgett Films: Formation as well as Spectral, Electrochemical and Vectorial Electron Transfer Studies. Journal of Nanoscience and Nanotechnology, 2007, 7, 1455-1471.	0.9	5
51	"Two-Point―Assembling of Zn(II) and Co(II) Metalloporphyrins Derivatized with a Crown Ether Substituent in Langmuir and Langmuirâ^'Blodgett Films. Langmuir, 2007, 23, 2555-2568.	1.6	12
52	Nanostructuring of Watson–Crick type base-paired (C60-uracil):(2-aminopurine) conjugates in Langmuir films. Physica Status Solidi (B): Basic Research, 2007, 244, 3861-3867.	0.7	3
53	Spectral Photoresponses of Carbon-Doped TiO[sub 2] Film Electrodes. Electrochemical and Solid-State Letters, 2004, 7, E31.	2.2	72
54	Structure and properties of C60–Pd films formed by electroreduction of C60 and palladium(ii) acetate trimer: evidence for the presence of palladium nanoparticles. Journal of Materials Chemistry, 2003, 13, 518-525.	6.7	36

#	Article	IF	CITATIONS
55	Molecular recognition of adenine, adenosine and ATP at the air–water interface by a uracil appended fullerene. Journal of Materials Chemistry, 2002, 12, 2123-2129.	6.7	44
56	Protonation-induced rearrangements in Langmuir films and redox properties of Langmuir–Blodgett films of 2-(n-alkyl)fulleropyrrolidines. Synthetic Metals, 2002, 130, 221-227.	2.1	5
57	Electrochemical quartz crystal microbalance studies of thin-solid films of higher fullerenes: C76, C78 and C84. Electrochimica Acta, 2002, 47, 2371-2380.	2.6	6
58	Probing interactions between TiO2 photocatalyst and adsorbing species using quartz crystal microbalance. Chemical Physics Letters, 2002, 364, 244-250.	1.2	12
59	Surface properties of Langmuir films of mono-, di-, and tetra-n-octyl adducts of C60 at the water–air interface. Synthetic Metals, 2001, 123, 157-164.	2.1	8
60	Simultaneous CV and EQCM study of thin-solid films of higher fullerenes: C[sub 76], C[sub 78] and C[sub 84]. AIP Conference Proceedings, 2001, , .	0.3	1
61	Electrochemical quartz crystal microbalance study of redox active C[sub 60]/Pd polymer films. AIP Conference Proceedings, 2000, , .	0.3	O
62	Study of Redox Active C[sub 60]/Pd Films by Simultaneous Cyclic Voltammetry and Piezoelectric Microgravimetry at an Electrochemical Quartz Crystal Microbalance. Journal of the Electrochemical Society, 2000, 147, 2597.	1.3	38
63	Electrochemistry of Solutions as well as Simultaneous Cyclic Voltammetry and Piezoelectric Microgravimetry of Conducting Films of 2-(n-Alkyl)fulleropyrrolidines. Journal of the Electrochemical Society, 2000, 147, 2647.	1.3	22
64	Carbon-iron arc plasma: Characterization and novel applications. European Physical Journal D, 1999, 49, 933-940.	0.4	7
65	Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance. Analytical Communications, 1999, 36, 391.	2.2	140
66	Structure Determination and Electrochemistry of Products from the Radical Reaction of C60with Azo(bisisobutyronitrile). Journal of Organic Chemistry, 1999, 64, 6257-6262.	1.7	42