Pieter P Tans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7125131/publications.pdf Version: 2024-02-01

	3334	3731
37,374	91	179
citations	h-index	g-index
313	313	23227
docs citations	times ranked	citing authors
	citations 313	37,374 91 citations h-index 313 313

#	Article	IF	CITATIONS
1	Observational Contrains on the Global Atmospheric Co2 Budget. Science, 1990, 247, 1431-1438.	12.6	1,981
2	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
3	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	9.9	1,167
4	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
5	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
6	An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18925-18930.	7.1	895
7	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	9.9	801
8	Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2. Science, 2007, 316, 1732-1735.	12.6	775
9	A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C Ratio of Atmospheric CO2. Science, 1995, 269, 1098-1102.	12.6	752
10	A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models. , 1998, 282, 442-446.		713
11	Methane Leaks from North American Natural Gas Systems. Science, 2014, 343, 733-735.	12.6	709
12	Regional Changes in Carbon Dioxide Fluxes of Land and Oceans Since 1980. Science, 2000, 290, 1342-1346.	12.6	680
13	Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research, 1994, 99, 22831.	3.3	674
14	Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical Research, 1989, 94, 8549-8565.	3.3	671
15	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	9.9	663
16	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	9.9	616
17	Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 2012, 488, 70-72.	27.8	583
18	Global Carbon Sinks and Their Variability Inferred from Atmospheric O2 and 13C. Science, 2000, 287, 2467-2470.	12.6	471

#	Article	IF	CITATIONS
19	Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	9.9	463
20	Changes in oceanic and terrestrial carbon uptake since 1982. Nature, 1995, 373, 326-330.	27.8	457
21	Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophysical Research Letters, 2013, 40, 4393-4397.	4.0	414
22	Upward revision of global fossil fuel methane emissions based on isotope database. Nature, 2016, 538, 88-91.	27.8	400
23	Continuing decline in the growth rate of the atmospheric methane burden. Nature, 1998, 393, 447-450.	27.8	384
24	Atmospheric methane levels off: Temporary pause or a new steady-state?. Geophysical Research Letters, 2003, 30, .	4.0	379
25	Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature, 1979, 277, 121-123.	27.8	364
26	Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. Journal of Geophysical Research, 2012, 117, .	3.3	359
27	Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. Journal of Geophysical Research, 1995, 100, 11593.	3.3	330
28	Enhanced Seasonal Exchange of CO ₂ by Northern Ecosystems Since 1960. Science, 2013, 341, 1085-1089.	12.6	329
29	Precision requirements for space-based data. Journal of Geophysical Research, 2007, 112, .	3.3	322
30	Partitioning of ocean and land uptake of CO2as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research, 1995, 100, 5051.	3.3	315
31	Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.	9.9	311
32	Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 2014, 1, 290.	9.3	296
33	Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature, 1992, 358, 313-316.	27.8	295
34	Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature, 1996, 383, 231-235.	27.8	288
35	Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature, 1999, 398, 597-601.	27.8	277
36	A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denverâ€Julesburg Basin. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6836-6852.	3.3	257

#	Article	IF	CITATIONS
37	Oceanic ¹³ C/ ¹² C observations: A new window on ocean CO ₂ uptake. Global Biogeochemical Cycles, 1993, 7, 353-368.	4.9	233
38	Mixing ratios of carbon monoxide in the troposphere. Journal of Geophysical Research, 1992, 97, 20731-20750.	3.3	228
39	Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 2010, 16, 1317-1337.	9.5	223
40	On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. Journal of Geophysical Research, 2007, 112, .	3.3	213
41	Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2at high northern latitudes. Geophysical Research Letters, 1999, 26, 2765-2768.	4.0	206
42	A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophysical Research Letters, 1994, 21, 45-48.	4.0	203
43	A three-dimensional synthesis study of δ18O in atmospheric CO2: 1. Surface fluxes. Journal of Geophysical Research, 1997, 102, 5857-5872.	3.3	200
44	CO ₂ , CO, and CH ₄ measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmospheric Measurement Techniques, 2014, 7, 647-687.	3.1	199
45	Recent Changes in Atmospheric Carbon Monoxide. Science, 1994, 263, 1587-1590.	12.6	197
46	Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region. Environmental Science & Technology, 2015, 49, 8124-8131.	10.0	190
47	Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model. Journal of Geophysical Research, 1989, 94, 5151-5172.	3.3	187
48	CarbonTracker-CH ₄ : an assimilation system for estimating emissions of atmospheric methane. Atmospheric Chemistry and Physics, 2014, 14, 8269-8293.	4.9	187
49	Monitoring the isotopic composition of atmospheric CO2: Measurements from the NOAA Global Air Sampling Network. Journal of Geophysical Research, 1996, 101, 25897-25916.	3.3	186
50	Comparison of14CO2, CO, and SF6as tracers for recently added fossil fuel CO2in the atmosphere and implications for biological CO2exchange. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	186
51	What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles, 1993, 7, 37-67.	4.9	185
52	Latitudinal variation in oxygen-18 of atmospheric CO2. Nature, 1987, 327, 495-497.	27.8	184
53	Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7, 359-363.	18.8	183
54	Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biology, 2001, 7, 127-145.	9.5	178

#	Article	IF	CITATIONS
55	An ensemble data assimilation system to estimate CO2surface fluxes from atmospheric trace gas observations. Journal of Geophysical Research, 2005, 110, .	3.3	177
56	Towards real-time verification of CO2 emissions. Nature Climate Change, 2017, 7, 848-850.	18.8	168
57	Inverse modeling estimates of the global nitrous oxide surface flux from 1998-2001. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	161
58	Compiled records of carbon isotopes in atmospheric CO ₂ for historical simulations in CMIP6. Geoscientific Model Development, 2017, 10, 4405-4417.	3.6	154
59	Seasonal climatology of CO ₂ across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5155-5190.	3.3	153
60	Natural atmospheric 14C variation and the Suess effect. Nature, 1979, 280, 826-828.	27.8	151
61	Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 2017, 7, 148-152.	18.8	151
62	Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nature Geoscience, 2016, 9, 490-495.	12.9	149
63	Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5361-5366.	7.1	149
64	Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. Atmospheric Chemistry and Physics, 2011, 11, 705-721.	4.9	148
65	New constraints on Northern Hemisphere growing season net flux. Geophysical Research Letters, 2007, 34, .	4.0	147
66	A geostatistical approach to surface flux estimation of atmospheric trace gases. Journal of Geophysical Research, 2004, 109, .	3.3	146
67	Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air. Journal of Geophysical Research, 2006, 111, .	3.3	146
68	AirCore: An Innovative Atmospheric Sampling System. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1839-1853.	1.3	145
69	Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 401-415.	1.6	143
70	Toward quantification and source sector identification of fossil fuel CO ₂ emissions from an urban area: Results from the INFLUX experiment. Journal of Geophysical Research D: Atmospheres, 2015, 120, 292-312.	3.3	140
71	CH4sources estimated from atmospheric observations of CH4and its13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	139
72	A new look at atmospheric carbon dioxide. Atmospheric Environment, 2009, 43, 2084-2086.	4.1	139

#	Article	IF	CITATIONS
73	Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nature Geoscience, 2018, 11, 744-748.	12.9	139
74	Combined Simple Biosphere/Carnegieâ€Amesâ€Stanford Approach terrestrial carbon cycle model. Journal of Geophysical Research, 2008, 113, .	3.3	138
75	Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 401-415.	1.6	137
76	Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 207-214.	1.6	135
77	The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 614-619.	1.6	132
78	Climatic Change in Tasmania Inferred from a 1089-Year Tree-Ring Chronology of Huon Pine. Science, 1991, 253, 1266-1268.	12.6	126
79	What is the concentration footprint of a tall tower?. Journal of Geophysical Research, 2001, 106, 17831-17840.	3.3	124
80	Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 2019, 568, 221-225.	27.8	124
81	Atmospheric carbon dioxide measurements in the remote global troposphere, 1981-1984. Tellus, Series B: Chemical and Physical Meteorology, 1988, 40B, 81-115.	1.6	123
82	Linking emissions of fossil fuel CO ₂ and other anthropogenic trace gases using atmospheric ¹⁴ CO ₂ . Journal of Geophysical Research, 2012, 117, .	3.3	121
83	Maximum likelihood estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions. Journal of Geophysical Research, 2005, 110, .	3.3	118
84	Variability in the O2/N2ratio of southern hemisphere air, 1991-1994: Implications for the carbon cycle. Global Biogeochemical Cycles, 1996, 10, 9-21.	4.9	115
85	Development of analytical methods and measurements of13C/12C in atmospheric CH4from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research, 2002, 107, ACH 11-1.	3.3	115
86	Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophysical Research Letters, 2007, 34, .	4.0	115
87	Changes in CH4and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux. Geophysical Research Letters, 1996, 23, 2761-2764.	4.0	108
88	Validation of XCO ₂ derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmospheric Chemistry and Physics, 2013, 13, 9771-9788.	4.9	106
89	Observed and simulated global distribution and budget of atmospheric C ₂ -C ₅ alkanes. Atmospheric Chemistry and Physics, 2010, 10, 4403-4422.	4.9	104
90	A high precision isotope ratio mass spectrometry method for measuring the ratio of air. Geochimica Et Cosmochimica Acta, 1994, 58, 4751-4758.	3.9	103

#	Article	IF	CITATIONS
91	In situ measurement of atmospheric CO ₂ at the four WMO/GAW stations in China. Atmospheric Chemistry and Physics, 2014, 14, 2541-2554.	4.9	102
92	Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. Tellus, 1980, 32, 268-283.	0.8	101
93	CH4sources estimated from atmospheric observations of CH4and its13C/12C isotopic ratios: 2. Inverse modeling of CH4fluxes from geographical regions. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	99
94	Determination of the isotopic(13C/12C) discrimination by terrestrial biology from a global network of observations. Global Biogeochemical Cycles, 1998, 12, 555-562.	4.9	96
95	Measurement of 180/160 in the soil-atmosphere CO2flux. Global Biogeochemical Cycles, 1999, 13, 761-774.	4.9	96
96	An Accounting of the Observed Increase in Oceanic and Atmospheric CO2 and the Outlook for the Future. Oceanography, 2009, 22, 26-35.	1.0	96
97	Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty. Biogeosciences, 2015, 12, 2565-2584.	3.3	96
98	Verification of flux measurement using relaxed eddy accumulation. Atmospheric Environment Part A General Topics, 1993, 27, 2417-2426.	1.3	95
99	Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nature Geoscience, 2018, 11, 504-509.	12.9	95
100	A feasible Global Carbon Cycle Observing System: a plan to decipher today's carbon cycle based on observations. Global Change Biology, 1996, 2, 309-318.	9.5	94
101	Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15591-15596.	7.1	92
102	NOAA/CSIRO Flask Air Intercomparison Experiment: A strategy for directly assessing consistency among atmospheric measurements made by independent laboratories. Journal of Geophysical Research, 2001, 106, 20445-20464.	3.3	91
103	Measurements of carbon dioxide on a very tall tower. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 535-549.	1.6	90
104	ObsPack: a framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth System Science Data, 2014, 6, 375-384.	9.9	88
105	Long-term greenhouse gas measurements from aircraft. Atmospheric Measurement Techniques, 2013, 6, 511-526.	3.1	87
106	Elevated atmospheric CO2effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	85
107	An improved Kalman Smoother for atmospheric inversions. Atmospheric Chemistry and Physics, 2005, 5, 2691-2702.	4.9	83
108	A new high precision14CO2time series for North American continental air. Journal of Geophysical Research, 2007, 112, .	3.3	83

#	Article	IF	CITATIONS
109	Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements. Environmental Science & Technology, 2017, 51, 7286-7294.	10.0	83
110	A note on isotopic ratios and the global atmospheric methane budget. Global Biogeochemical Cycles, 1997, 11, 77-81.	4.9	82
111	Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth and Planetary Science Letters, 2010, 293, 359-367.	4.4	82
112	A high precision manometric system for absolute calibrations of CO2in dry air. Journal of Geophysical Research, 1997, 102, 5885-5894.	3.3	81
113	Atmospheric O2/N2changes, 1993-2002: Implications for the partitioning of fossil fuel CO2sequestration. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	78
114	Atmospheric carbon dioxide measurements in the remote global troposphere, 1981-1984. Tellus, Series B: Chemical and Physical Meteorology, 2022, 40, 81.	1.6	77
115	A three-dimensional synthesis study of δ180 in atmospheric CO2: 2. Simulations with the TM2 transport model. Journal of Geophysical Research, 1997, 102, 5873-5883.	3.3	75
116	Application of a Differential Fuel-Cell Analyzer for Measuring Atmospheric Oxygen Variations. Journal of Atmospheric and Oceanic Technology, 2007, 24, 82-94.	1.3	74
117	Toward regional-scale modeling using the two-way nested global model TM5: Characterization of transport using SF6. Journal of Geophysical Research, 2004, 109, .	3.3	73
118	Canopy-scale delta13C of photosynthetic and respiratory CO2 fluxes: observations in forest biomes across the United States. Global Change Biology, 2005, 11, 633-643.	9.5	67
119	Atmospheric observations of carbon monoxide and fossil fuel CO ₂ emissions from East Asia. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	65
120	Estimating US fossil fuel CO ₂ emissions from measurements of ¹⁴ C in atmospheric CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13300-13307.	7.1	65
121	Predicted shift in the ¹³ <i>C</i> / ¹² <i>C</i> ratio of atmospheric carbon dioxide. Geophysical Research Letters, 1980, 7, 505-508.	4.0	64
122	Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	64
123	Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique. Atmospheric Measurement Techniques, 2013, 6, 1031-1040.	3.1	64
124	Vertical profiles of CO ₂ above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 581.	1.6	63
125	Variations in atmospheric methane at Mauna Loa Observatory related to longâ€range transport. Journal of Geophysical Research, 1992, 97, 6003-6010.	3.3	62
126	Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 207.	1.6	62

#	Article	IF	CITATIONS
127	Regional US carbon sinks from three-dimensional atmospheric CO ₂ sampling. Proceedings of the United States of America, 2010, 107, 18348-18353.	7.1	61
128	Anthropogenic sources of halocarbons, sulfur hexafluoride, carbon monoxide, and methane in the southeastern United States. Journal of Geophysical Research, 1997, 102, 15915-15925.	3.3	58
129	Past atmospheric CO ₂ levels and the ¹³ C/ ¹² C ratios in tree rings. Tellus, 1980, 32, 268-283.	0.8	57
130	Oxygen isotopic equilibrium between carbon dioxide and water in soils. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 163-178.	1.6	57
131	Improving stratospheric transport trend analysis based on SF ₆ and CO ₂ measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 14,110.	3.3	57
132	Chemical pretreatment and radial flow of 14C in tree rings. Nature, 1978, 271, 234-235.	27.8	55
133	Net terrestrial CO ₂ exchange over China during 2001-2010 estimated with an ensemble data assimilation system for atmospheric CO ₂ . Journal of Geophysical Research D: Atmospheres, 2014, 119, 3500-3515.	3.3	54
134	Carbon monoxide budget in the northern hemisphere. Geophysical Research Letters, 1994, 21, 433-436.	4.0	52
135	No significant increase in longâ€ŧerm CH ₄ emissions on North Slope of Alaska despite significant increase in air temperature. Geophysical Research Letters, 2016, 43, 6604-6611.	4.0	52
136	Oxygen isotopic equilibrium between carbon dioxide and water in soils. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 163.	1.6	51
137	Correlations among combustion effluent species at Barrow, Alaska: Aerosol black carbon, carbon dioxide, and methane. Journal of Atmospheric Chemistry, 1989, 9, 283-299.	3.2	50
138	Trends and temporal variations of major greenhouse gases at a rural site in Central Europe. Atmospheric Environment, 2008, 42, 8707-8716.	4.1	50
139	Improved Constraints on Global Methane Emissions and Sinks Using <i>δ</i> ¹³ C H ₄ . Global Biogeochemical Cycles, 2021, 35, e2021GB007000.	4.9	50
140	A comprehensive global three-dimensional model of δ180 in atmospheric CO2: 2. Mapping the atmospheric signal. Journal of Geophysical Research, 2003, 108, .	3.3	49
141	Carbon Crucible. Science, 2008, 320, 460-461.	12.6	49
142	Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO ₂ measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1100-1122.	3.3	49
143	Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries. Journal of Climate, 2013, 26, 4447-4475.	3.2	48
144	Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model. Global Biogeochemical Cycles, 2002, 16, 1-1-15.	4.9	47

#	Article	IF	CITATIONS
145	U.S. CH ₄ emissions from oil and gas production: Have recent large increases been detected?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4070-4083.	3.3	47
146	Biosphere model simulations of interannual variability in terrestrial ¹³ C/ ¹² C exchange. Global Biogeochemical Cycles, 2013, 27, 637-649.	4.9	46
147	Enhanced North American carbon uptake associated with El Niño. Science Advances, 2019, 5, eaaw0076.	10.3	45
148	A global calculation of the δ13C of soil respired carbon: Implications for the biospheric uptake of anthropogenic CO2. Global Biogeochemical Cycles, 1999, 13, 519-530.	4.9	44
149	Volatile Organic Compounds in the Global Atmosphere. Eos, 2009, 90, 513-514.	0.1	44
150	A multi-year record of airborne CO ₂ observations in the US Southern Great Plains. Atmospheric Measurement Techniques, 2013, 6, 751-763.	3.1	44
151	Strong Southern Ocean carbon uptake evident in airborne observations. Science, 2021, 374, 1275-1280.	12.6	44
152	Boreal ecosystems sequestered more carbon in warmer years. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	42
153	Highâ€resolution emissions of CO ₂ from power generation in the USA. Journal of Geophysical Research, 2008, 113, .	3.3	42
154	Atmospheric CO ₂ inversion validation using vertical profile measurements: Analysis of four independent inversion models. Journal of Geophysical Research, 2011, 116, .	3.3	41
155	A 3-dimensional study of delta18O in atmospheric CO2: contribution of different land ecosystems. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 642-667.	1.6	40
156	Bias corrections of GOSAT SWIR XCO ₂ and XCH ₄ with TCCON data and their evaluation using aircraft measurement data. Atmospheric Measurement Techniques, 2016, 9, 3491-3512.	3.1	40
157	Estimating photosynthetic13C discrimination in terrestrial CO2exchange from canopy to regional scales. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	39
158	Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO ₂ observations for the period 2006–2010. Atmospheric Chemistry and Physics, 2014, 14, 5807-5824.	4.9	38
159	Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide. Atmospheric Chemistry and Physics, 2011, 11, 11007-11021.	4.9	37
160	The seasonal cycle of atmospheric CO2: A study based on the NCAR Community Climate Model (CCM2). Journal of Geophysical Research, 1996, 101, 15079-15097.	3.3	36
161	A 3-dimensional study of δ ¹⁸ O in atmospheric CO ₂ : contribution of different land ecosystems. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 642.	1.6	36
162	Threeâ€dimensional SF ₆ data and tropospheric transport simulations: Signals, modeling accuracy, and implications for inverse modeling. Journal of Geophysical Research, 2007, 112, .	3.3	35

#	Article	IF	CITATIONS
163	Spatial and temporal resolution of carbon flux estimates for 1983–2002. Biogeosciences, 2011, 8, 1309-1331.	3.3	35
164	Allocation of Terrestrial Carbon Sources Using ¹⁴ CO ₂ : Methods, Measurement, and Modeling. Radiocarbon, 2013, 55, 1484-1495.	1.8	35
165	Longâ€∓erm Measurements Show Little Evidence for Large Increases in Total U.S. Methane Emissions Over the Past Decade. Geophysical Research Letters, 2019, 46, 4991-4999.	4.0	35
166	On calculating the transfer of carbon-13 in reservoir models of the carbon cycle. Tellus, 1980, 32, 464-469.	0.8	34
167	Spatial distribution of Δ ¹⁴ CO ₂ across Eurasia: measurements from the TROICA-8 expedition. Atmospheric Chemistry and Physics, 2009, 9, 175-187.	4.9	34
168	Inverse Modeling of CO ₂ Fluxes Using GOSAT Data and Multi-Year Ground-Based Observations. Scientific Online Letters on the Atmosphere, 2013, 9, 45-50.	1.4	34
169	Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China. Atmospheric Environment, 2016, 131, 1-8.	4.1	34
170	Impact of CO ₂ measurement bias on CarbonTracker surface flux estimates. Journal of Geophysical Research, 2011, 116, .	3.3	33
171	An integrated flask sample collection system for greenhouse gas measurements. Atmospheric Measurement Techniques, 2012, 5, 2321-2327.	3.1	33
172	Abundances of isotopologues and calibration of CO ₂ greenhouse gas measurements. Atmospheric Measurement Techniques, 2017, 10, 2669-2685.	3.1	33
173	Validation of XCH ₄ derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmospheric Measurement Techniques, 2014, 7, 2987-3005.	3.1	32
174	Continued emissions of carbon tetrachloride from the United States nearly two decades after its phaseout for dispersive uses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2880-2885.	7.1	32
175	A Design for Unattended Monitoring of Carbon Dioxide on a Very Tall Tower. Journal of Atmospheric and Oceanic Technology, 1997, 14, 1139-1145.	1.3	31
176	Evaluation of solid adsorbent materials for cryogen-free trapping—gas chromatographic analysis of atmospheric C2–C6 non-methane hydrocarbons. Journal of Chromatography A, 2006, 1134, 1-15.	3.7	31
177	Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons. Atmospheric Chemistry and Physics, 2014, 14, 1463-1483.	4.9	31
178	The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 197-206.	1.6	31
179	On calculating the transfer of carbon-13 in reservoir models of the carbon cycle. Tellus, 2022, 32, 464.	0.8	31
180	An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986-1997. Journal of Geophysical Research, 2000, 105, 17267-17278.	3.3	30

#	Article	IF	CITATIONS
181	Sampling, storage, and analysis of C2–C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks. Journal of Chromatography A, 2008, 1188, 75-87.	3.7	30
182	Land use and season affect fluxes of CO ₂ , CH ₄ , CO, N ₂ O, H ₂ and isotopic source signatures in Panama: evidence from nocturnal boundary layer profiles. Global Change Biology, 2010, 16, 2721-2736.	9.5	30
183	Novel applications of carbon isotopes in atmospheric CO ₂ : what can atmospheric measurements teach us about processes in the biosphere?. Biogeosciences, 2011, 8, 3093-3106.	3.3	30
184	U.S. emissions of HFCâ€134a derived for 2008–2012 from an extensive flaskâ€air sampling network. Journal of Geophysical Research D: Atmospheres, 2015, 120, 801-825.	3.3	30
185	Considerable contribution of the Montreal Protocol to declining greenhouse gas emissions from the United States. Geophysical Research Letters, 2017, 44, 8075-8083.	4.0	30
186	Revision of the World Meteorological Organization Global Atmosphere Watch (WMO/GAW) CO ₂ calibration scale. Atmospheric Measurement Techniques, 2021, 14, 3015-3032.	3.1	30
187	THE GLOBAL CARBON CYCLE:In Balance, with a Little Help from the Plants. , 1998, 281, 183-184.		29
188	Regional N ₂ O fluxes in Amazonia derived from aircraft vertical profiles. Atmospheric Chemistry and Physics, 2009, 9, 8785-8797.	4.9	29
189	Tracking climate forcing: The annual greenhouse gas index. Eos, 2006, 87, 509.	0.1	27
190	Constraints on emissions of carbon monoxide, methane, and a suite of hydrocarbons in the Colorado Front Range using observations of ¹⁴ CO ₂ . Atmospheric Chemistry and Physics, 2013, 13, 11101-11120.	4.9	27
191	Comparison of the regional CO ₂ mole fraction filtering approaches at a WMO/GAW regional station in China. Atmospheric Measurement Techniques, 2015, 8, 5301-5313.	3.1	27
192	An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO ₂ concentration data. Environmental Research Letters, 2015, 10, 034012.	5.2	27
193	Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO ₂ seasonal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21079-21087.	7.1	27
194	Development of the CO2latitude gradient in recent decades. Global Biogeochemical Cycles, 1999, 13, 821-826.	4.9	26
195	Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower. Atmospheric Chemistry and Physics, 2016, 16, 5383-5398.	4.9	26
196	The CO2 budget and rectification airborne study: Strategies for measuring rectifiers and regional fluxes. Geophysical Monograph Series, 2000, , 311-324.	0.1	25
197	Land use effects on atmospheric13C imply a sizable terrestrial CO2sink in tropical latitudes. Geophysical Research Letters, 2002, 29, 68-1-68-4.	4.0	25
198	Measurements of landscape-scale fluxes of carbon dioxide in the Peruvian Amazon by vertical profiling through the atmospheric boundary layer. Journal of Geophysical Research, 2000, 105, 22137-22146.	3.3	24

#	Article	IF	CITATIONS
199	Analysis of patterns in the concentrations of atmospheric greenhouse gases measured in two typical urban clusters in China. Atmospheric Environment, 2018, 173, 343-354.	4.1	24
200	Design, Construction and Calibration of A High Accuracy Carbon-14 Counting Set up. Radiocarbon, 1978, 21, 22-40.	1.8	23
201	A new method for describing long-term changes in total ozone. Geophysical Research Letters, 2001, 28, 4535-4538.	4.0	23
202	Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling. Journal of Geophysical Research, 2003, 108, .	3.3	23
203	Analysis of CO ₂ mole fraction data: first evidence of large-scale changes in CO ₂ uptake at high northern latitudes. Atmospheric Chemistry and Physics, 2015, 15, 13739-13758.	4.9	23
204	Apparent seasonal cycle in isotopic discrimination of carbon in the atmosphere and biosphere due to vapor pressure deficit. Global Biogeochemical Cycles, 2010, 24, .	4.9	22
205	The carbon cycle response to two El Nino types: an observational study. Environmental Research Letters, 2018, 13, 024001.	5.2	22
206	COCAP: a carbon dioxide analyser for small unmanned aircraft systems. Atmospheric Measurement Techniques, 2018, 11, 1833-1849.	3.1	22
207	Regional CO2 fluxes inferred from mixing ratio measurements: estimates from flask air samples in central Kansas, USA. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 523-536.	1.6	21
208	Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport. Science China Earth Sciences, 2017, 60, 1886-1895.	5.2	21
209	COS-derived GPP relationships with temperature and light help explain high-latitude atmospheric CO ₂ seasonal cycle amplification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
210	Mauna Loa volcano is not a methane source: Implications for Mars. Geophysical Research Letters, 2006, 33, .	4.0	20
211	Atmospheric constraints on 2004 emissions of methane and nitrous oxide in North America from atmospheric measurements and a receptor-oriented modeling framework. Journal of Integrative Environmental Sciences, 2010, 7, 125-133.	2.5	20
212	Short-term variations of atmospheric CO2 and dominant causes in summer and winter: Analysis of 14-year continuous observational data at Waliguan, China. Atmospheric Environment, 2013, 77, 140-148.	4.1	20
213	Atmospheric column-averaged mole fractions of carbon dioxide at 53 aircraft measurement sites. Atmospheric Chemistry and Physics, 2013, 13, 5265-5275.	4.9	20
214	Observation of atmospheric CO ₂ and CO at Shangri-La station: results from the only regional station located at southwestern China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 28506.	1.6	19
215	Observational Strategy for Assessing the Role of Terrestrial Ecosystems in the Global Carbon Cycle: Scaling Down to Regional Levels. , 1993, , 179-190.		19
216	The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 197.	1.6	18

#	Article	IF	CITATIONS
217	Simulation of variability in atmospheric carbon dioxide using a global coupled Eulerian – Lagrangian transport model. Geoscientific Model Development, 2011, 4, 317-324.	3.6	18
218	A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 366-375.	1.6	17
219	Longâ€ŧerm air quality monitoring at the South Pole by the NOAA Program Geophysical Monitoring for Climatic Change. Reviews of Geophysics, 1988, 26, 63-80.	23.0	16
220	Error estimates of background atmospheric CO ₂ patterns from weekly flask samples. Journal of Geophysical Research, 1990, 95, 14063-14070.	3.3	16
221	Atmospheric CO2 and its ĺ13C measurements from flask sampling at Lin'an regional background station in China. Atmospheric Environment, 2015, 117, 220-226.	4.1	16
222	CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations. Geoscientific Model Development, 2018, 11, 3515-3536.	3.6	16
223	Decadal trends of atmospheric methane in East Asia from 1991 to 2013. Air Quality, Atmosphere and Health, 2015, 8, 293-298.	3.3	15
224	Development of a Northern Continental Air Standard Reference Material. Analytical Chemistry, 2016, 88, 3376-3385.	6.5	15
225	On the regional background levels of carbon monoxide observed in East Asia during 1991â^1⁄42004. Air Quality, Atmosphere and Health, 2008, 1, 37-44.	3.3	14
226	Climatological variability of air temperature and precipitation observed in South Korea for the last 50Âyears. Air Quality, Atmosphere and Health, 2016, 9, 645-651.	3.3	14
227	Modeling dynamics of stable carbon isotopic exchange between a boreal forest ecosystem and the atmosphere. Global Change Biology, 2006, 12, 1842-1867.	9.5	13
228	Comparison of atmospheric CO2 mole fractions and source–sink characteristics at four WMO/GAW stations in China. Atmospheric Environment, 2018, 180, 216-225.	4.1	13
229	Low backgroundâ€rate detector for 40â€keV ions using a conversion dynode and a microchannelâ€plate electron multiplier to reject lowâ€energy ions, electrons, and photons. Review of Scientific Instruments, 1988, 59, 98-111.	1.3	12
230	Atmospheric carbon dioxide measurements at Cape Matatula, American Samoa, 1976–1987. Journal of Geophysical Research, 1989, 94, 14817-14829.	3.3	12
231	Influence of two atmospheric transport models on inferring sources and sinks of atmospheric CO2. Tellus, Series B: Chemical and Physical Meteorology, 1996, 48, 568-582.	1.6	12
232	Simulating dynamics of –13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 537-549.	1.6	12
233	Deriving daily carbon fluxes from hourly CO2mixing ratios measured on the WLEF tall tower: An upscaling methodology. Journal of Geophysical Research, 2007, 112, .	3.3	12
234	Temperature anomaly reemergence in seasonally frozen soils. Journal of Geophysical Research, 2007, 112, .	3.3	12

#	Article	IF	CITATIONS
235	Gradients of column CO ₂ across North America from the NOAA Global Greenhouse Gas Reference Network. Atmospheric Chemistry and Physics, 2017, 17, 15151-15165.	4.9	12
236	Experimental and numerical studies of the 180 exchange between CO2 and water in the atmosphere–soil invasion flux. Geochimica Et Cosmochimica Acta, 2007, 71, 2657-2671.	3.9	11
237	A Cost-Effective Trace Gas Measurement Program for Long-Term Monitoring of the Stratospheric Circulation. Bulletin of the American Meteorological Society, 2014, 95, 147-155.	3.3	11
238	Atmospheric CO2 at Waliguan station in China: Transport climatology, temporal patterns and source-sink region representativeness. Atmospheric Environment, 2017, 159, 107-116.	4.1	11
239	Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase. Communications Earth & Environment, 2022, 3, .	6.8	11
240	Influence of two atmospheric transport models on inf erring sources and sinks of atmospheric CO2. Tellus, Series B: Chemical and Physical Meteorology, 1996, 48, 568-582.	1.6	10
241	Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation. Applied Optics, 2006, 45, 4136.	2.1	10
242	Ratios of greenhouse gas emissions observed over the Yellow Sea and the East China Sea. Science of the Total Environment, 2018, 633, 1022-1031.	8.0	10
243	A 40 keV cyclotron for radioisotope dating. Nuclear Instruments & Methods in Physics Research B, 1984, 5, 230-232.	1.4	9
244	Correction to "A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992―by E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, L. P. Steele, and E. G. Nisbet. Geophysical Research Letters, 1994, 21, 507-507.	4.0	9
245	Reply to "Comments on â€~A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992'― Geophysical Research Letters, 1994, 21, 2447-2448.	4.0	8
246	The Co2 Lifetime Concept Should Be Banished; An Editorial Comment. Climatic Change, 1997, 37, 487-490.	3.6	8
247	KEYNOTE PERSPECTIVE. Carbon cycle research after Kyoto. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 562-571.	1.6	8
248	Reply to comment on "Hydrocarbon emissions characterization in the Colorado Front Range-A pilot study―by Michael A. Levi. Journal of Geophysical Research D: Atmospheres, 2013, 118, 236-242.	3.3	8
249	A study on carbon dioxide concentrations and carbon isotopes measured in East Asia during 1991–2011. Air Quality, Atmosphere and Health, 2014, 7, 173-179.	3.3	8
250	Investigating large methane enhancements in the U.S. San Juan Basin. Elementa, 2020, 8, .	3.2	8
251	Separating contributions from natural and anthropogenic sources in atmospheric methane from the Black Sea region, Romania. Applied Geochemistry, 2008, 23, 2871-2879.	3.0	7
252	Very old firn air linked to strong density layering at Styx Glacier, coastal Victoria Land, East Antarctica. Cryosphere, 2019, 13, 2407-2419.	3.9	7

#	Article	IF	CITATIONS
253	Carbon cycle research after Kyoto. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 562.	1.6	6
254	Experiments with CO ₂ -in-air reference gases in high-pressure aluminum cylinders. Atmospheric Measurement Techniques, 2018, 11, 5565-5586.	3.1	6
255	The CarbonTracker Data Assimilation System for CO ₂ and <i>δ</i> ¹³ C (CTDAS-C13 v1.0): retrieving information onÂland–atmosphere exchange processes. Geoscientific Model Development, 2018. 11. 283-304.	3.6	6
256	On the regional distributions of background carbon monoxide concentrations observed in East Asia during 1991–2008. Asia-Pacific Journal of Atmospheric Sciences, 2010, 46, 89-95.	2.3	5
257	Steps for success of OCO-2. Nature Geoscience, 2014, 7, 691-691.	12.9	5
258	Strong regional atmospheric 14 C signature of respired CO 2 observed from a tall tower over the midwestern United States. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2275-2295.	3.0	5
259	Fill dynamics and sample mixing in the AirCore. Atmospheric Measurement Techniques, 2022, 15, 1903-1916.	3.1	5
260	Microcollection of Gases in a Capillary Tube: Preservation of Spatial and Temporal Resolution. Analytical Chemistry, 2012, 84, 8310-8316.	6.5	4
261	Atmospheric oil and natural gas hydrocarbon trends in the Northern Colorado Front Range are notably smaller than inventory emissions reductions. Elementa, 2021, 9, .	3.2	4
262	A time-dependent assimilation and source retrieval technique for atmospheric tracers. Geophysical Monograph Series, 2000, , 265-277.	0.1	3
263	Potential improvements aimed at high precision δ13C isotopic ratio determinations in CO2 mixtures using optical absorption spectrometry. Talanta, 2018, 184, 73-86.	5.5	3
264	Estimating the short-time rate of change in the trend of the Keeling curve. Scientific Reports, 2020, 10, 21222.	3.3	3
265	Trends and Temporal Variations of Major Greenhouse Gases at a Rural Site in Central Europe. , 2011, , 29-47.		3
266	Hydrocarbon Tracers Suggest Methane Emissions from Fossil Sources Occur Predominately Before Gas Processing and That Petroleum Plays Are a Significant Source. Environmental Science & Technology, 0, , .	10.0	3
267	Estimation of regional surface CO2fluxes with GOSAT observations using two inverse modeling approaches. , 2012, , .		2
268	Corrigendum to "Atmospheric column-averaged mole fractions of carbon dioxide at 53 aircraft measurement sites" published in Atmos. Chem. Phys. 13, 5265–5275, 2013. Atmospheric Chemistry and Physics, 2013, 13, 9213-9216.	4.9	2
269	Variability analyses, site characterization, and regional [OH] estimates using trace gas measurements from the NOAA Global Greenhouse Gas Reference Network. Elementa, 2016, 4, .	3.2	2
270	REMINISCING ON THE USE AND ABUSE OF ¹⁴ C AND ¹³ C IN ATMOSPHERIC CO ₂ . Radiocarbon, 2022, 64, 747-760.	1.8	1

#	Article	IF	CITATIONS
271	Seventh International CO2 Conference, Boulder, Colorado, 25-30 September 2005. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 327-327.	1.6	0
272	Characterization and validation of CO ₂ and CH ₄ products from the GOSAT thermal infrared band. Proceedings of SPIE, 2012, , .	0.8	0
273	Multiyear average characteristics of CO2 variations in the free atmosphere over Colorado (40°ÂN,) Tj ETQq1 1 C).784314 r 4.1	gBT /Overloc
274	Corrigendum to "Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide". Atmospheric Chemistry and Physics, 2014, 14, 9511-9511.	4.9	0
275	THE CARBON CYCLE AND ANTHROPOGENIC CLIMATE CHANGE. , 2003, , .		0
276	Comments on Skrable et al. (2022). Health Physics, 2022, 122, 707-709.	0.5	0