
Zhenxing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7124856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonvolatile reconfigurable broadband photodiodes based on BP/ α -In2Se3 ferroelectric p–n junctions. Applied Physics Letters, 2022, 120, .	3.3	21
2	High-performance ultraviolet photodetectors based on 2D layered In4/3P2Se6 nanoflakes. Applied Physics Letters, 2022, 120, .	3.3	7
3	Growth, Raman Scattering Investigation and Photodetector Properties of 2D SnP. Small, 2022, 18, e2108017.	10.0	5
4	A Ferroelectric p–i–n Heterostructure for Highly Enhanced Short ircuit Current Density and Selfâ€Powered Photodetection. Advanced Electronic Materials, 2022, 8, .	5.1	17
5	One-step method to simultaneously synthesize separable Te and GeTe nanosheets. Nano Research, 2022, 15, 6736-6742.	10.4	4
6	Controllable preparation of ultrathin 2D BiOBr crystals for high-performance ultraviolet photodetector. Science China Materials, 2021, 64, 189-197.	6.3	20
7	Nonlayered Tin Thiohypodiphosphate Nanosheets: Controllable Growth and Solar-Light-Driven Water Splitting. ACS Applied Materials & amp; Interfaces, 2021, 13, 13392-13399.	8.0	15
8	Self-intercalated two-dimensional magnetic semiconductor V8(S1-xSex)15. Applied Physics Letters, 2021, 118, 221903.	3.3	2
9	Recent progress on emergent two-dimensional magnets and heterostructures. Nanotechnology, 2021, 32, 472001.	2.6	25
10	Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p-n junction. Nano Research, 2021, 14, 4328-4335.	10.4	33
11	Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Science Bulletin, 2021, 66, 2288-2296.	9.0	23
12	Controlled synthesis and Raman study of a 2D antiferromagnetic P-type semiconductor: α-MnSe. Nanoscale, 2021, 13, 6953-6964.	5.6	20
13	Two-Dimensional Unipolar Memristors with Logic and Memory Functions. Nano Letters, 2020, 20, 4144-4152.	9.1	50
14	Gateâ€Couplingâ€Enabled Robust Hysteresis for Nonvolatile Memory and Programmable Rectifier in Van der Waals Ferroelectric Heterojunctions. Advanced Materials, 2020, 32, e1908040.	21.0	84
15	Tunable Room-Temperature Ferromagnetism in Two-Dimensional Cr ₂ Te ₃ . Nano Letters, 2020, 20, 3130-3139.	9.1	175
16	Subthermionic field-effect transistors with sub-5Ânm gate lengths based on van der Waals ferroelectric heterostructures. Science Bulletin, 2020, 65, 1444-1450.	9.0	17
17	Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Advanced Materials, 2019, 31, e1901694.	21.0	250
18	Growth and Raman Scattering Investigation of a New 2D MOX Material: YbOCl. Advanced Functional Materials, 2019, 29, 1903017.	14.9	21

ZHENXING WANG

#	Article	IF	CITATIONS
19	Multibit Optoelectronic Memory in Topâ€Floatingâ€Gated van der Waals Heterostructures. Advanced Functional Materials, 2019, 29, 1902890.	14.9	69
20	Antiâ€Ambipolar Transport with Large Electrical Modulation in 2D Heterostructured Devices. Advanced Materials, 2019, 31, e1901144.	21.0	28
21	Ultrathin Magnetic 2D Singleâ€Crystal CrSe. Advanced Materials, 2019, 31, e1900056.	21.0	154
22	Sub-millimeter-Scale Growth of One-Unit-Cell-Thick Ferrimagnetic Cr ₂ S ₃ Nanosheets. Nano Letters, 2019, 19, 2154-2161.	9.1	110
23	High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and their Photocatalytic Activity. Advanced Functional Materials, 2018, 28, 1800548.	14.9	116
24	Nonvolatile infrared memory in MoS ₂ /PbS van der Waals heterostructures. Science Advances, 2018, 4, eaap7916.	10.3	161
25	Highâ€Performance Nearâ€Infrared Photodetector Based on Ultrathin Bi ₂ O ₂ Se Nanosheets. Advanced Functional Materials, 2018, 28, 1706437.	14.9	201
26	New Frontiers on van der Waals Layered Metal Phosphorous Trichalcogenides. Advanced Functional Materials, 2018, 28, 1802151.	14.9	223
27	2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chemical Society Reviews, 2018, 47, 6296-6341.	38.1	207
28	High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nature Electronics, 2018, 1, 356-361.	26.0	197
29	Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity. Nano Energy, 2017, 40, 673-680.	16.0	91
30	Highâ€Performance Ultraviolet Photodetector Based on a Few‣ayered 2D NiPS ₃ Nanosheet. Advanced Functional Materials, 2017, 27, 1701342.	14.9	220
31	Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Applied Physics Letters, 2016, 109, .	3.3	60
32	Tunable GaTe-MoS ₂ van der Waals p–n Junctions with Novel Optoelectronic Performance. Nano Letters, 2015, 15, 7558-7566.	9.1	369
33	Van der Waals Epitaxy and Photoresponse of Hexagonal Tellurium Nanoplates on Flexible Mica Sheets. ACS Nano, 2014, 8, 7497-7505.	14.6	259
34	Role of Ga Vacancy on a Multilayer GaTe Phototransistor. ACS Nano, 2014, 8, 4859-4865.	14.6	162
35	Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters. Nanotechnology, 2013, 24, 185705.	2.6	48