
John Alroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7124728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phylogenyâ€based conservation priorities for Australian freshwater fishes. Conservation Biology, 2022, 36, .	2.4	5
2	The legacy of Eastern Mediterranean mountain uplifts: rapid disparity of phylogenetic niche conservatism and divergence in mountain vipers. Bmc Ecology and Evolution, 2021, 21, 130.	0.7	11
3	Marine diversity patterns in Australia are filtered through biogeography. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211534.	1.2	2
4	The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200372.	1.2	38
5	On four measures of taxonomic richness. Paleobiology, 2020, 46, 158-175.	1.3	16
6	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	3.4	144
7	Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science, 2019, 365, 1305-1308.	6.0	33
8	The <scp>r</scp> package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution, 2019, 10, 735-743.	2.2	73
9	Discovering biogeographic and ecological clusters with a graph theoretic spin on factor analysis. Ecography, 2019, 42, 1504-1513.	2.1	4
10	Small mammals have big tails in the tropics. Global Ecology and Biogeography, 2019, 28, 1042-1050.	2.7	18
11	High diversity and rapid spatial turnover of integron gene cassettes in soil. Environmental Microbiology, 2019, 21, 1567-1574.	1.8	33
12	Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale. Nature Ecology and Evolution, 2019, 3, 590-597.	3.4	48
13	Latitudinal gradients in the ecology of New World bats. Global Ecology and Biogeography, 2019, 28, 784-792.	2.7	12
14	How should we estimate diversity in the fossil record? Testing richness estimators using samplingâ€standardised discovery curves. Methods in Ecology and Evolution, 2018, 9, 1386-1400.	2.2	74
15	Limits to species richness in terrestrial communities. Ecology Letters, 2018, 21, 1781-1789.	3.0	25
16	Pattern, process, inference and prediction in extinction biology. Biology Letters, 2017, 13, 20160828.	1.0	9
17	Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6056-6061.	3.3	221
18	Inferring diet from dental morphology in terrestrial mammals. Methods in Ecology and Evolution, 2017, 8, 481-491.	2.2	55

#	Article	IF	CITATIONS
19	Near-Stasis in the Long-Term Diversification of Mesozoic Tetrapods. PLoS Biology, 2016, 14, e1002359.	2.6	55
20	On a conservative Bayesian method of inferring extinction. Paleobiology, 2016, 42, 670-679.	1.3	2
21	Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nature Climate Change, 2016, 6, 909-916.	8.1	42
22	The relationship between diet and body mass in terrestrial mammals. Paleobiology, 2016, 42, 659-669.	1.3	48
23	A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates. Scientific Data, 2016, 3, 160053.	2.4	16
24	A simple Bayesian method of inferring extinction: reply. Ecology, 2016, 97, 798-800.	1.5	3
25	Reply to Solow: Sense and nonsense in the choice of extinction priors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1133-E1133.	3.3	0
26	Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 2016, 7, 10511.	5.8	109
27	What caused extinction of the Pleistocene megafauna of Sahul?. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152399.	1.2	41
28	A simple Bayesian method for inferring extinction: Reply. Ecology, 2016, 97, 798.	1.5	2
29	A simple way to improve multivariate analyses of paleoecological data sets. Paleobiology, 2015, 41, 377-386.	1.3	12
30	Limits to captive breeding of mammals in zoos. Conservation Biology, 2015, 29, 926-931.	2.4	25
31	The shape of terrestrial abundance distributions. Science Advances, 2015, 1, e1500082.	4.7	37
32	Current extinction rates of reptiles and amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13003-13008.	3.3	184
33	A more precise speciation and extinction rate estimator. Paleobiology, 2015, 41, 633-639.	1.3	52
34	Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages. Quaternary Geochronology, 2015, 30, 69-79.	0.6	31
35	A new twist on a very old binary similarity coefficient. Ecology, 2015, 96, 575-586.	1.5	44
36	Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141173.	1.2	77

#	Article	IF	CITATIONS
37	Accurate and precise estimates of origination and extinction rates. Paleobiology, 2014, 40, 374-397.	1.3	131
38	A simple Bayesian method of inferring extinction. Paleobiology, 2014, 40, 584-607.	1.3	24
39	On the flux ratio method and correcting incorrect forms of correct equations. Paleobiology, 2011, 37, 710-711.	1.3	0
40	THE GEOZOIC SUPEREON. Palaios, 2011, 26, 251-255.	0.6	5
41	Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology, 2011, 37, 303-331.	1.3	31
42	Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology, 2010, 53, 1211-1235.	1.0	223
43	Fair Sampling of Taxonomic Richness and Unbiased Estimation of Origination and Extinction Rates. The Paleontological Society Papers, 2010, 16, 55-80.	0.8	128
44	The Shifting Balance of Diversity Among Major Marine Animal Groups. Science, 2010, 329, 1191-1194.	6.0	359
45	Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 2008, 321, 97-100.	6.0	643
46	Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11536-11542.	3.3	396
47	Statistical Independence of Escalatory Ecological Trends in Phanerozoic Marine Invertebrates. Science, 2006, 312, 897-900.	6.0	77
48	Are the most durable shelly taxa also the most common in the marine fossil record?. Paleobiology, 2005, 31, 607-623.	1.3	59
49	Similarity of Mammalian Body Size across the Taxonomic Hierarchy and across Space and Time. American Naturalist, 2004, 163, 672-691.	1.0	173
50	Cenozoic Bolide Impacts and Biotic Change in North American Mammals. Astrobiology, 2003, 3, 119-132.	1.5	7
51	TAXONOMIC INFLATION AND BODY MASS DISTRIBUTIONS IN NORTH AMERICAN FOSSIL MAMMALS. Journal of Mammalogy, 2003, 84, 431-443.	0.6	50
52	Global databases will yield reliable measures of global biodiversity. Paleobiology, 2003, 29, 26-29.	1.3	36
53	How many named species are valid?. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3706-3711.	3.3	123
54	STRATIGRAPHY IN PHYLOGENY RECONSTRUCTION—REPLY TO SMITH (2000). Journal of Paleontology, 2002, 76, 587.	0.5	6

#	Article	IF	CITATIONS
55	Stratigraphy in phylogeny reconstruction—reply to Smith (2000). Journal of Paleontology, 2002, 76, 587-589.	0.5	5
56	Mammalian Dispersal at the Paleocene/Eocene Boundary. Science, 2002, 295, 2062-2065.	6.0	225
57	A Multispecies Overkill Simulation of the End-Pleistocene Megafaunal Mass Extinction. Science, 2001, 292, 1893-1896.	6.0	454
58	Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6261-6266.	3.3	440
59	Speciation and extinction in the fossil record of North American mammals. , 2001, , 301-323.		33
60	12. Equilibrial Diversity Dynamics in North American Mammals. , 2001, , 232-287.		1
61	Global climate change and North American mammalian evolution. Paleobiology, 2000, 26, 259-288.	1.3	113
62	Global climate change and North American mammalian evolution. Paleobiology, 2000, 26, 259-288.	1.3	93
63	Successive approximations of diversity curves: Ten more years in the library. Geology, 2000, 28, 1023.	2.0	54
64	Understanding the dynamics of trends within evolving lineages. Paleobiology, 2000, 26, 319-329.	1.3	96
65	New methods for quantifying macroevolutionary patterns and processes. Paleobiology, 2000, 26, 707-733.	1.3	254
66	The Fossil Record of North American Mammals: Evidence for a Paleocene Evolutionary Radiation. Systematic Biology, 1999, 48, 107-118.	2.7	235
67	Putting North America's End-Pleistocene Megafaunal Extinction in Context. , 1999, , 105-143.		67
68	Cope's Rule and the Dynamics of Body Mass Evolution in North American Fossil Mammals. Science, 1998, 280, 731-734.	6.0	456
69	Diachrony of mammalian appearance events: Implications for biochronology. Geology, 1998, 26, 23.	2.0	46
70	Diachrony of mammalian appearance events: Implications for biochronology: Comments and Reply. Geology, 1998, 26, 955.	2.0	2
71	Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 285-311.	1.0	228
72	Continuous Track Analysis: A New Phylogenetic and Biogeographic Method. Systematic Biology, 1995, 44, 152.	2.7	7

#	Article	IF	CITATIONS
73	Continuous Track Analysis: A New Phylogenetic and Biogeographic Method. Systematic Biology, 1995, 44, 152-178.	2.7	33
74	Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115, 117-155.	1.0	138
75	Appearance event ordination: a new biochronologic method. Paleobiology, 1994, 20, 191-207.	1.3	84
76	Driving both ways: Wilson & Sober's conflicting criteria for the identification of groups as vehicles of selection. Behavioral and Brain Sciences, 1994, 17, 608-610.	0.4	2
77	Four Permutation Tests for the Presence of Phylogenetic Structure. Systematic Biology, 1994, 43, 430.	2.7	3
78	Quantitative mammalian biochronology and biogeography of the late Eocene through early Pleistocene. The Paleontological Society Special Publications, 1992, 6, 5-5.	0.0	0
79	Conjunction among taxonomic distributions and the Miocene mammalian biochronology of the Great Plains. Paleobiology, 1992, 18, 326-343.	1.3	86