List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7124725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Case Detection, Diagnosis, and Treatment of Patients with Primary Aldosteronism: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3266-3281.	3.6	1,440
2	Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes and Endocrinology,the, 2017, 5, 689-699.	11.4	595
3	Primary Hyperaldosteronism in Essential Hypertensives: Prevalence, Biochemical Profile, and Molecular Biology ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 1863-1867.	3.6	381
4	Adipocytes Produce Aldosterone Through Calcineurin-Dependent Signaling Pathways. Hypertension, 2012, 59, 1069-1078.	2.7	292
5	Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation, 2015, 132, 2134-2145.	1.6	257
6	Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4591-9.	7.1	256
7	The Multifaceted Mineralocorticoid Receptor. , 2014, 4, 965-994.		231
8	Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Molecular and Cellular Endocrinology, 2014, 383, 111-117.	3.2	225
9	Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E11-E24.	3.5	219
10	Development of a Panel of Monoclonal Antibodies against the Mineralocorticoid Receptor. Endocrinology, 2006, 147, 1343-1348.	2.8	168
11	Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO Journal, 2008, 27, 179-187.	7.8	168
12	Potassium Channel Mutant KCNJ5 T158A Expression in HAC-15 Cells Increases Aldosterone Synthesis. Endocrinology, 2012, 153, 1774-1782.	2.8	155
13	Adrenocortical Zonation Results from Lineage Conversion of Differentiated Zona Glomerulosa Cells. Developmental Cell, 2013, 26, 666-673.	7.0	149
14	The hsp90-FKBP52 Complex Links the Mineralocorticoid Receptor to Motor Proteins and Persists Bound to the Receptor in Early Nuclear Events. Molecular and Cellular Biology, 2010, 30, 1285-1298.	2.3	138
15	Activating mutations in CTNNB1 in aldosterone producing adenomas. Scientific Reports, 2016, 6, 19546.	3.3	129
16	Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia. European Journal of Neuroscience, 2007, 25, 1832-1842.	2.6	127
17	International Histopathology Consensus for Unilateral Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 42-54.	3.6	127
18	ELEVATED URINARY EXCRETION OF 18-OXOCORTISOL IN GLUCOCORTICOID-SUPPRESSIBLE ALDOSTERONISM. Journal of Clinical Endocrinology and Metabolism, 1984, 59, 1022-1024.	3.6	123

#	Article	IF	CITATIONS
19	Genetic Characteristics of Aldosterone-Producing Adenomas in Blacks. Hypertension, 2019, 73, 885-892.	2.7	121
20	Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Molecular and Cellular Endocrinology, 2015, 411, 146-154.	3.2	115
21	18-Hydroxycorticosterone, 18-Hydroxycortisol, and 18-Oxocortisol in the Diagnosis of Primary Aldosteronism and Its Subtypes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 881-889.	3.6	105
22	Measurement of Peripheral Plasma 18-Oxocortisol Can Discriminate Unilateral Adenoma From Bilateral Diseases in Patients With Primary Aldosteronism. Hypertension, 2015, 65, 1096-1102.	2.7	105
23	The Ubiquitous Mineralocorticoid Receptor: Clinical Implications. Current Hypertension Reports, 2012, 14, 573-580.	3.5	102
24	Histopathological classification of cross-sectional image negative hyperaldosteronism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2986.	3.6	96
25	In vivo nuclear translocation of mineralocorticoid and glucocorticoid receptors in rat kidney: differential effect of corticosteroids along the distal tubule. American Journal of Physiology - Renal Physiology, 2010, 299, F1473-F1485.	2.7	94
26	Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H555-H564.	3.2	86
27	PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nature Communications, 2016, 7, 12751.	12.8	86
28	Adrenal CYP11B1/2 expression in primary aldosteronism: Immunohistochemical analysis using novel monoclonal antibodies. Molecular and Cellular Endocrinology, 2014, 392, 73-79.	3.2	84
29	Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension, 2018, 71, 317-325.	2.7	77
30	Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Science Signaling, 2019, 12, .	3.6	75
31	Aldosterone synthesis in the brain contributes to Dahl saltâ€sensitive rat hypertension. Experimental Physiology, 2010, 95, 120-130.	2.0	74
32	A ZNRF3-dependent Wnt∫î²-catenin signaling gradient is required for adrenal homeostasis. Genes and Development, 2019, 33, 209-220.	5.9	74
33	Development of Adrenal Zonation in Fetal Rats Defined by Expression of Aldosterone Synthase and 11β-Hydroxylase. Endocrinology, 1998, 139, 4397-4403.	2.8	71
34	18-Oxocortisol Measurement in Adrenal Vein Sampling as a Biomarker for Subclassifying Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1272-E1278.	3.6	70
35	Disabled-2 Is Expressed in Adrenal Zona Glomerulosa and Is Involved in Aldosterone Secretion. Endocrinology, 2007, 148, 2644-2652.	2.8	64
36	The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Scientific Reports, 2017, 7, 39121.	3.3	62

#	Article	IF	CITATIONS
37	The Potassium Channel, Kir3.4 Participates in Angiotensin II-Stimulated Aldosterone Production by a Human Adrenocortical Cell Line. Endocrinology, 2012, 153, 4328-4335.	2.8	61
38	Development of a novel cell based androgen screening model. Journal of Steroid Biochemistry and Molecular Biology, 2016, 156, 17-22.	2.5	60
39	A Novel KCNJ5-insT149 Somatic Mutation Close to, but Outside, the Selectivity Filter Causes Resistant Hypertension by Loss of Selectivity for Potassium. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1765-E1773.	3.6	55
40	Different Somatic Mutations in Multinodular Adrenals With Aldosterone-Producing Adenoma. Hypertension, 2015, 66, 1014-1022.	2.7	55
41	Central regulation of blood pressure by the mineralocorticoid receptor. Molecular and Cellular Endocrinology, 2012, 350, 289-298.	3.2	51
42	Immunohistopathology and Steroid Profiles Associated With Biochemical Outcomes After Adrenalectomy for Unilateral Primary Aldosteronism. Hypertension, 2018, 72, 650-657.	2.7	51
43	Regulation of 11β-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E272-E279.	3.5	50
44	Different Expression of 11β-Hydroxylase and Aldosterone Synthase Between Aldosterone-Producing Microadenomas and Macroadenomas. Hypertension, 2014, 64, 438-444.	2.7	48
45	Immunohistochemistry of aldosterone synthase leads the way to the pathogenesis of primary aldosteronism. Molecular and Cellular Endocrinology, 2017, 441, 124-133.	3.2	48
46	18-Oxocortisol Synthesis in Aldosterone-Producing Adrenocortical Adenoma and Significance of <i>KCNJ5</i> Mutation Status. Hypertension, 2019, 73, 1283-1290.	2.7	48
47	Adrenal Histopathology in Primary Aldosteronism. Hypertension, 2015, 66, 724-730.	2.7	44
48	Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB Journal, 2015, 29, 4544-4554.	0.5	44
49	PRKACA Somatic Mutations Are Rare Findings in Aldosterone-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3010-3017.	3.6	43
50	The 11β hydroxysteroid dehydrogenase 2 exists as an inactive dimer. Steroids, 2001, 66, 845-848.	1.8	41
51	Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R328-R340.	1.8	40
52	The Biology of Normal Zona Glomerulosa And Aldosterone-Producing Adenoma: Pathological Implications. Endocrine Reviews, 2018, 39, 1029-1056.	20.1	40
53	DIAGNOSIS OF ENDOCRINE DISEASE: 18-Oxocortisol and 18-hydroxycortisol: is there clinical utility of these steroids?. European Journal of Endocrinology, 2018, 178, R1-R9.	3.7	39
54	3β-hydroxysteroid dehydrogenase isoforms in human aldosterone-producing adenoma. Molecular and Cellular Endocrinology, 2015, 408, 205-212.	3.2	38

#	Article	IF	CITATIONS
55	Intratumoral heterogeneity of steroidogenesis in aldosterone-producing adenoma revealed by intensive double- and triple-immunostaining for CYP11B2/B1 and CYP17. Molecular and Cellular Endocrinology, 2016, 422, 57-63.	3.2	38
56	Calneuron 1 Increased Ca 2+ in the Endoplasmic Reticulum and Aldosterone Production in Aldosterone-Producing Adenoma. Hypertension, 2018, 71, 125-133.	2.7	37
57	Functional imaging with 11C-metomidate PET for subtype diagnosis in primary aldosteronism. European Journal of Endocrinology, 2020, 183, 539-550.	3.7	36
58	Glucocorticoid receptor plays an indispensable role in mineralocorticoid receptor-dependent transcription in GR-deficient BE(2)C and T84 cells in vitro. Molecular and Cellular Endocrinology, 2009, 302, 18-25.	3.2	35
59	Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor. Biochemical and Biophysical Research Communications, 2014, 445, 132-137.	2.1	33
60	Corticotroph tumor progression after bilateral adrenalectomy (Nelson's syndrome): systematic review and expert consensus recommendations. European Journal of Endocrinology, 2021, 184, P1-P16.	3.7	32
61	Disordered CYP11B2 Expression in Primary Aldosteronism. Hormone and Metabolic Research, 2017, 49, 957-962.	1.5	31
62	Non-islet Cell Hypoglycemia: Case Series and Review of the Literature. Frontiers in Endocrinology, 2019, 10, 316.	3.5	30
63	Tumor Cell Subtypes Based on the Intracellular Hormonal Activity in <i>KCNJ5</i> -Mutated Aldosterone-Producing Adenoma. Hypertension, 2018, 72, 632-640.	2.7	29
64	Minireview: Potassium Channels and Aldosterone Dysregulation: Is Primary Aldosteronism a Potassium Channelopathy?. Endocrinology, 2014, 155, 47-55.	2.8	28
65	Rapid Screening of Primary Aldosteronism by a Novel Chemiluminescent Immunoassay. Hypertension, 2017, 70, 334-341.	2.7	28
66	Somatic KCNJ5 mutation occurring early in adrenal development may cause a novel form of juvenile primary aldosteronism. Molecular and Cellular Endocrinology, 2017, 441, 134-139.	3.2	28
67	Primary Aldosteronism. Hypertension, 2019, 74, 809-816.	2.7	27
68	In situ metabolomics of aldosterone-producing adenomas. JCI Insight, 2019, 4, .	5.0	27
69	Hypomethylation of CYP11B2 in Aldosterone-Producing Adenoma. Hypertension, 2016, 68, 1432-1437.	2.7	26
70	Disordered zonal and cellular CYP11B2 enzyme expression in familial hyperaldosteronism type 3. Molecular and Cellular Endocrinology, 2017, 439, 74-80.	3.2	26
71	11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Molecular and Cellular Endocrinology, 2021, 526, 111210.	3.2	26
72	Diverse immunostaining patterns of mineralocorticoid receptor monoclonal antibodies. Steroids, 2011, 76, 1541-1545.	1.8	24

#	Article	IF	CITATIONS
73	Mouse Models of Primary Aldosteronism: From Physiology to Pathophysiology. Endocrinology, 2017, 158, 4129-4138.	2.8	24
74	Histopathological and genetic characterization of aldosterone-producing adenomas with concurrent subclinical cortisol hypersecretion: a case series. Endocrine, 2017, 58, 503-512.	2.3	22
75	Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal. Molecular and Cellular Endocrinology, 2016, 434, 69-80.	3.2	21
76	Cortisol overproduction results from DNA methylation of CYP11B1 in hypercortisolemia. Scientific Reports, 2017, 7, 11205.	3.3	21
77	Immunohistochemical Demonstration of the Mineralocorticoid Receptor, 11β-Hydroxysteroid Dehydrogenase-1 and â^'2, and Hexose-6-phosphate Dehydrogenase in Rat Ovary. Journal of Histochemistry and Cytochemistry, 2009, 57, 633-641.	2.5	20
78	A time-resolved fluoroimmunoassay for 18-oxocortisol and 18-hydroxycortisol. Journal of Steroid Biochemistry and Molecular Biology, 2002, 82, 83-88.	2.5	19
79	Similar Efficacy from Specific andÂNon-Specific Mineralocorticoid Receptor Antagonist Treatment of Muscular Dystrophy Mice. Journal of Neuromuscular Diseases, 2016, 3, 395-404.	2.6	18
80	Gonadotropin-Releasing Hormone Stimulate Aldosterone Production in a Subset of Aldosterone-Producing Adenoma. Medicine (United States), 2016, 95, e3659.	1.0	18
81	Development of monoclonal antibodies against the human 3β-hydroxysteroid dehydrogenase/isomerase isozymes. Steroids, 2017, 127, 56-61.	1.8	18
82	Endoplasmic Reticulum Chaperone Calmegin Is Upregulated in Aldosterone-Producing Adenoma and Associates With Aldosterone Production. Hypertension, 2020, 75, 492-499.	2.7	18
83	Normoaldosteronemic aldosterone-producing adenoma. Journal of Hypertension, 2015, 33, 2546-2549.	0.5	17
84	Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle. Physiological Genomics, 2017, 49, 277-286.	2.3	17
85	Renal Injuries in Primary Aldosteronism: Quantitative Histopathological Analysis of 19 Patients With Primary Adosteronism. Hypertension, 2021, 78, 411-421.	2.7	17
86	Regulation of aldosterone biosynthesis by the <scp>K</scp> ir3.4 (<scp>KCNJ</scp> 5) potassium channel. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 895-901.	1.9	16
87	Immunohistochemistry of the adrenal in primary aldosteronism. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 242-248.	2.3	16
88	Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Molecular and Cellular Endocrinology, 2017, 441, 99-107.	3.2	16
89	Measurement of 11-dehydrocorticosterone in mice, rats and songbirds: Effects of age, sex and stress. General and Comparative Endocrinology, 2019, 281, 173-182.	1.8	16
90	Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. Journal of Clinical Investigation, 2019, 130, 83-93.	8.2	16

#	Article	IF	CITATIONS
91	Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy. Human Molecular Genetics, 2016, 25, ddw331.	2.9	15
92	Mineralocorticoid Receptor Antagonists in Muscular Dystrophy Mice During Aging and Exercise. Journal of Neuromuscular Diseases, 2018, 5, 295-306.	2.6	15
93	Expression of aldosterone synthase CYP11B2 was inversely correlated with longevity. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105361.	2.5	14
94	The landscape of molecular mechanism for aldosterone production in aldosterone-producing adenoma. Endocrine Journal, 2020, 67, 989-995.	1.6	14
95	Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study. Endocrine Pathology, 2017, 28, 27-35.	9.0	13
96	Immunohistochemistry of the Human Adrenal CYP11B2 in Normal Individuals and in Patients with Primary Aldosteronism. Hormone and Metabolic Research, 2020, 52, 421-426.	1.5	13
97	Review of Markers of Zona Glomerulosa and Aldosterone-Producing Adenoma Cells. Hypertension, 2017, 70, 867-874.	2.7	12
98	DLK1/PREF1 marks a novel cell population in the human adrenal cortex. Journal of Steroid Biochemistry and Molecular Biology, 2019, 193, 105422.	2.5	12
99	What Is the Role of the Adipocyte Mineralocorticoid Receptor in the Metabolic Syndrome?. Hypertension, 2015, 66, 17-19.	2.7	11
100	Calf adrenocortical fasciculata cells secrete aldosterone when placed in primary culture. Journal of Steroid Biochemistry and Molecular Biology, 1993, 45, 493-500.	2.5	9
101	YPEL4 modulates HAC15 adrenal cell proliferation and is associated with tumor diameter. Molecular and Cellular Endocrinology, 2016, 434, 93-98.	3.2	9
102	Interaction of the Mineralocorticoid Receptor With RACK1 and Its Role in Aldosterone Signaling. Endocrinology, 2017, 158, 2367-2375.	2.8	9
103	Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Frontiers in Physiology, 2019, 10, 1324.	2.8	9
104	Creation of a quick and sensitive fluorescent immunosensor for detecting the mineralocorticoid steroid hormone aldosterone. Journal of Steroid Biochemistry and Molecular Biology, 2022, 221, 106118.	2.5	9
105	Utilization of a Mutagenesis Screen to Generate Mouse Models of Hyperaldosteronism. Endocrinology, 2011, 152, 326-331.	2.8	7
106	Somatic mutations of the ATP1A1 gene and aldosterone-producing adenomas. Molecular and Cellular Endocrinology, 2015, 408, 213-219.	3.2	7
107	Purkinje Cell Protein 4 Expression Is Associated With DNA Methylation Status in Aldosterone-Producing Adenoma. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 965-971.	3.6	7
108	The Mineralocorticoid Receptor and the Heart. Endocrinology, 2021, 162, .	2.8	7

#	Article	IF	CITATIONS
109	Genotype-specific cortisol production associated with Cushing's syndrome adenoma with PRKACA mutations. Molecular and Cellular Endocrinology, 2021, 538, 111456.	3.2	7
110	Characterization of Aldosterone-producing Cell Cluster (APCC) at Single-cell Resolution. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2439-2448.	3.6	7
111	The Protective Side of the Mineralocorticoid Receptor. Endocrinology, 2012, 153, 1565-1567.	2.8	6
112	Incomplete Pattern of Steroidogenic Protein Expression in Functioning Adrenocortical Carcinomas. Biomedicines, 2020, 8, 256.	3.2	6
113	Familial Hyperaldosteronism Type 3 with a Rapidly Growing Adrenal Tumor: An In Situ Aldosterone Imaging Study. Current Issues in Molecular Biology, 2022, 44, 128-138.	2.4	6
114	Primary Aldosteronism. Hypertension, 2014, 63, 668-669.	2.7	5
115	Non-neoplastic/hyperplastic primary aldosteronism – Its histopathology and genotype. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 122-131.	1.4	5
116	Aldosterone-Producing Adenomas. Hypertension, 2020, 75, 927-929.	2.7	4
117	11βHSD2 Efficacy in Preventing Transcriptional Activation of the Mineralocorticoid Receptor by Corticosterone. Journal of the Endocrine Society, 2021, 5, bvab146.	0.2	4
118	ATP1A1 Mutant in Aldosterone-Producing Adenoma Leads to Cell Proliferation. International Journal of Molecular Sciences, 2021, 22, 10981.	4.1	4
119	Of Mice and Man and the Regulation of Aldosterone Secretion. Hypertension, 2017, 70, 240-242.	2.7	3
120	Segmental Adrenal Vein Sampling in Patients With Primary Aldosteronism. Hypertension, 2020, 76, 662-664.	2.7	3
121	Hypomethylation associated vitamin D receptor expression in ATP1A1 mutant aldosterone-producing adenoma. Molecular and Cellular Endocrinology, 2022, 548, 111613.	3.2	3
122	Aldosterone/Mineralocorticoid Receptors and Their Renal Effects. , 2018, , 493-515.		2
123	Response to Letter on use of functional imaging by 11C-metomidate PET for primary aldosteronism subtyping. European Journal of Endocrinology, 2021, 184, L11-L12.	3.7	2
124	Association of DNA methylation with steroidogenic enzymes in Cushing's adenoma. Endocrine-Related Cancer, 2022, , .	3.1	1
125	Testosterone and Renal Renin Angiotensin System in salt sensitive hypertension FASEB Journal, 2006, 20, A1193.	0.5	0
126	MicroRNAâ€21 Increases Aldosterone Secretion and Proliferation in H295R Human Adrenocortical Cells. FASEB Journal, 2008, 22, 736.6.	0.5	0

#	Article	lF	CITATIONS
127	Aldosterone (ALDO)â€Salt induced activation of the Lamina Terminalis (LT) and paraventricular nucleus (PVN) neurons that express mineralocorticoid receptors (MR) in rats. FASEB Journal, 2008, 22, 73-73.	0.5	0
128	Synthesis of aldosterone in the brain contributes to the hypertension in the Dahl salt sensitive rat. FASEB Journal, 2009, 23, 1017.27.	0.5	0
129	Droshaâ€dependent miRNA regulate aldosterone synthesis by increasing StAR and HSD3B2 expression. FASEB Journal, 2012, 26, 1093.14.	0.5	0
130	Brain 11βâ€hydroxysteroid dehydrogenase activity: which enzyme?. FASEB Journal, 2012, 26, 706.6.	0.5	0
131	Expression of Mineralocorticoid and Clucocorticoid receptors in Preâ€autonomic Neurons of the Rat Paraventricular Nucleus. FASEB Journal, 2013, 27, 535.4.	0.5	0
132	Abstract 008: Novel Pathological Diagnosis Between Aldosterone Producing Adenoma And Idiopathic Hyperaldosteronism. Hypertension, 2014, 64, .	2.7	0
133	Extra-adrenal glucocorticoid and mineralocorticoid biosynthesis. Endocrinology, 2022, , .	2.8	Ο