
David K Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7124258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€Tech Applications of Selfâ€Assembling Supramolecular Nanostructured Gelâ€Phase Materials: From Regenerative Medicine to Electronic Devices. Angewandte Chemie - International Edition, 2008, 47, 8002-8018.	7.2	1,171
2	Applying low-molecular weight supramolecular gelators in an environmental setting – self-assembled gels as smart materials for pollutant removal. Chemical Society Reviews, 2016, 45, 4226-4251.	18.7	630
3	Supramolecular materials. Chemical Society Reviews, 2017, 46, 2404-2420.	18.7	530
4	Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chemical Society Reviews, 2009, 38, 684.	18.7	370
5	Low-Molecular-Weight Gelators: Elucidating the Principles of Gelation Based on Gelator Solubility and a Cooperative Self-Assembly Model. Journal of the American Chemical Society, 2008, 130, 9113-9121.	6.6	361
6	Functional Dendrimers: Unique Biological Mimics. Chemistry - A European Journal, 1998, 4, 1353-1361.	1.7	352
7	Two-Component Gel-Phase Materials—Highly Tunable Self-Assembling Systems. Chemistry - A European Journal, 2005, 11, 5496-5508.	1.7	349
8	Shaping and structuring supramolecular gels. Nature Reviews Materials, 2019, 4, 463-478.	23.3	270
9	Two-Component Dendritic Gels:  Easily Tunable Materials. Journal of the American Chemical Society, 2003, 125, 9010-9011.	6.6	209
10	Expanding the scope of gels – combining polymers with low-molecular-weight gelators to yield modified self-assembling smart materials with high-tech applications. Materials Horizons, 2015, 2, 279-293.	6.4	184
11	Self-assembly using dendritic building blocks—towards controllable nanomaterials. Progress in Polymer Science, 2005, 30, 220-293.	11.8	178
12	Solvent Effects on Supramolecular Gel-Phase Materials:Â Two-Component Dendritic Gel. Langmuir, 2004, 20, 10851-10857.	1.6	174
13	Heparin sensing and binding – taking supramolecular chemistry towards clinical applications. Chemical Society Reviews, 2013, 42, 9184.	18.7	173
14	Dendrimers and hyperbranched polymers. Chemical Society Reviews, 2015, 44, 3870-3873.	18.7	171
15	Neutral Ferrocenoyl Receptors for the Selective Recognition and Sensing of Anionic Guests. Inorganic Chemistry, 1997, 36, 2112-2118.	1.9	166
16	Dendritic supermolecules $\hat{a} \in$ "towards controllable nanomaterials. Chemical Communications, 2006, , 34-44.	2.2	166
17	Degradable Self-Assembling Dendrons for Gene Delivery: Experimental and Theoretical Insights into the Barriers to Cellular Uptake. Journal of the American Chemical Society, 2011, 133, 20288-20300.	6.6	166
18	Selfâ€Assembled Multivalency: Dynamic Ligand Arrays for Highâ€Affinity Binding. Angewandte Chemie - International Edition, 2012, 51, 6572-6581.	7.2	157

#	Article	IF	CITATIONS
19	Supramolecular dendritic two-component gel. Chemical Communications, 2001, , 319-320.	2.2	154
20	Two-Component Dendritic Gel: Effect of Stereochemistry on the Supramolecular Chiral Assembly. Chemistry - A European Journal, 2004, 10, 5901-5910.	1.7	145
21	Solvent–gelator interactions—using empirical solvent parameters to better understand the self-assembly of gel-phase materials. Soft Matter, 2011, 7, 110-117.	1.2	135
22	1,3:2,4-Dibenzylidene- <scp>d</scp> -sorbitol (DBS) and its derivatives – efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter, 2015, 11, 4768-4787.	1.2	134
23	Versatile supramolecular pH-tolerant hydrogels which demonstrate pH-dependent selective adsorption of dyes from aqueous solution. Chemical Communications, 2013, 49, 11164.	2.2	131
24	Enantioselective Component Selection in Multicomponent Supramolecular Gels. Journal of the American Chemical Society, 2014, 136, 1116-1124.	6.6	127
25	High-Affinity Multivalent DNA Binding by Using Low-Molecular-Weight Dendrons. Angewandte Chemie - International Edition, 2005, 44, 2556-2559.	7.2	119
26	Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene- <scp>d</scp> -sorbitol Derivatives. Journal of the American Chemical Society, 2015, 137, 15486-15492.	6.6	119
27	Controlled self-sorting in the assembly of â€~multi-gelator' gels. Chemical Communications, 2009, , 316-318.	2.2	118
28	Modeling the Multivalent Recognition between Dendritic Molecules and DNA: Understanding How Ligand "Sacrifice―and Screening Can Enhance Binding. Journal of the American Chemical Society, 2009, 131, 9686-9694.	6.6	118
29	Metastable two-component gel—exploring the gel–crystal interface. Chemical Communications, 2008, , 2248.	2.2	115
30	Dynamic Evolving Two-Component Supramolecular Gels—Hierarchical Control over Component Selection in Complex Mixtures. Journal of the American Chemical Society, 2013, 135, 5911-5920.	6.6	115
31	Synthesis of gold nanoparticles within a supramolecular gel-phase network. Chemical Communications, 2005, , 1971.	2.2	114
32	Dendritic Gels—Many Arms Make Light Work. Advanced Materials, 2006, 18, 2773-2778.	11.1	113
33	Ferrocene Encapsulated within Symmetric Dendrimers:  A Deeper Understanding of Dendritic Effects on Redox Potential. Journal of the American Chemical Society, 2002, 124, 856-864.	6.6	112
34	Selfâ€Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Angewandte Chemie - International Edition, 2019, 58, 4173-4178.	7.2	110
35	Supramolecular Dendrimer Chemistry: A Journey Through the Branched Architecture. Topics in Current Chemistry, 2000, , 183-227.	4.0	109
36	Mallard Blue: A High-Affinity Selective Heparin Sensor That Operates in Highly Competitive Media. Journal of the American Chemical Society, 2013, 135, 2911-2914.	6.6	107

#	Article	IF	CITATIONS
37	Two-Component Dendritic Gel:Â Effect of Spacer Chain Length on the Supramolecular Chiral Assembly. Langmuir, 2004, 20, 7070-7077.	1.6	104
38	Optically Triggered Release of DNA from Multivalent Dendrons by Degrading and Chargeâ€Switching Multivalency. Angewandte Chemie - International Edition, 2007, 46, 7600-7604.	7.2	103
39	Self-sorting multi-gelator gels—mixing and ageing effects in thermally addressable supramolecular soft nanomaterials. Soft Matter, 2011, 7, 4856.	1.2	103
40	Supramolecular Self-Assembly To Control Structural and Biological Properties of Multicomponent Hydrogels. Chemistry of Materials, 2019, 31, 7883-7897.	3.2	102
41	Self-Organisation in the Assembly of Gels from Mixtures of Different Dendritic Peptide Building Blocks. Chemistry - A European Journal, 2007, 13, 2180-2188.	1.7	101
42	Selfâ€Assembly of Twoâ€Component Gels: Stoichiometric Control and Component Selection. Chemistry - A European Journal, 2009, 15, 372-379.	1.7	96
43	A Direct Comparison of One- and Two-Component Dendritic Self-Assembled Materials:Â Elucidating Molecular Recognition Pathways. Journal of the American Chemical Society, 2005, 127, 7130-7139.	6.6	93
44	Anion binding by catechols—an NMR, optical and electrochemical study. Organic and Biomolecular Chemistry, 2006, 4, 1760-1767.	1.5	91
45	Selective Extraction and In Situ Reduction of Precious Metal Salts from Model Waste To Generate Hybrid Gels with Embedded Electrocatalytic Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 183-187.	7.2	91
46	Hybrid polymer and low molecular weight gels – dynamic two-component soft materials with both responsive and robust nanoscale networks. Soft Matter, 2013, 9, 8730.	1.2	90
47	Anion Binding and Recognition by Inorganic Based Receptors. Progress in Inorganic Chemistry, 2007, , 1-96.	3.0	88
48	Multicomponent polysaccharide alginate-based bioinks. Journal of Materials Chemistry B, 2020, 8, 8171-8188.	2.9	88
49	Unique Nanoscale Morphologies Underpinning Organic Gel-Phase Materials. Chemistry - A European Journal, 2005, 11, 6552-6559.	1.7	83
50	Precisely Defined Protein–Polymer Conjugates: Construction of Synthetic DNA Binding Domains on Proteins by Using Multivalent Dendrons. ACS Nano, 2007, 1, 103-113.	7.3	77
51	Dendritic Gelators. Topics in Current Chemistry, 2005, 256, 237-273.	4.0	76
52	Less is more – multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chemical Science, 2010, 1, 393.	3.7	76
53	Hydrophobically Modified Dendrons: Developing Structureâ^'Activity Relationships for DNA Binding and Gene Transfection. Molecular Pharmaceutics, 2011, 8, 416-429.	2.3	74
54	Transition metal cation and phosphate anion electrochemical recognition in water by new polyaza ferrocene macrocyclic ligands. Inorganica Chimica Acta, 1996, 246, 143-150.	1.2	73

#	Article	IF	CITATIONS
55	Dendrons with Spermine Surface Groups as Potential Building Blocks for Nonviral Vectors in Gene Therapy. Bioconjugate Chemistry, 2006, 17, 172-178.	1.8	73
56	Dendroclefts: Optically Active Dendritic Receptors for the Selective Recognition and Chiroptical Sensing of Monosaccharide Guests. Helvetica Chimica Acta, 1999, 82, 1225-1241.	1.0	72
57	One-Component Gels Based on Peptidic Dendrimers:Â Dendritic Effects on Materials Properties. Langmuir, 2004, 20, 6580-6585.	1.6	70
58	Synergistic effects in gene delivery—a structure–activity approach to the optimisation of hybrid dendritic–lipidic transfection agents. Chemical Communications, 2008, , 4700.	2.2	70
59	Dendritic hydrogen bonding receptors: enantiomerically pure dendroclefts for the selective recognition of monosaccharides. Chemical Communications, 1998, , 2501-2502.	2.2	69
60	Supramolecular dendrimer chemistry: using dendritic crown ethers to reversibly generate functional assemblies. Tetrahedron, 2003, 59, 3999-4009.	1.0	69
61	Building bridges. Nature Chemistry, 2010, 2, 162-163.	6.6	69
62	Anion Recognition by Redox-Responsive Ditopic Bis-Cobaltocenium Receptor Molecules Including a Novel Calix[4]arene Derivative That Binds a Dicarboxylate Dianion. Organometallics, 1995, 14, 3288-3295.	1.1	67
63	Tunable bis(ferrocenyl) receptors for the solution-phase electrochemical sensing of transition-metal cations. Journal of the Chemical Society Dalton Transactions, 1998, , 417-424.	1.1	67
64	Rapid NMR screening of chloride receptors: uncovering catechol as a useful anion binding motifElectronic supplemenary information (ESI) available: calibration graphs for the binding process between receptor 1 and chloride, and a worked example illustrating the use of this calibrated competitive method to determine the binding constant between receptor 15 and chloride. See http://www.rsc.org/suppdata/ob/b3/b310455a/. Organic and Biomolecular Chemistry, 2003, 1, 3874.	1.5	66
65	Selfâ€Assembling Ligands for Multivalent Nanoscale Heparin Binding. Angewandte Chemie - International Edition, 2011, 50, 4675-4679.	7.2	66
66	Multivalent Dendrons for High-Affinity Adhesion of Proteins to DNA. Angewandte Chemie - International Edition, 2006, 45, 3538-3542.	7.2	65
67	Ortho-Substituted Catechol Derivatives:Â The Effect of Intramolecular Hydrogen-Bonding Pathways on Chloride Anion Recognition. Journal of Organic Chemistry, 2007, 72, 2803-2815.	1.7	65
68	Dendrimers and the Double Helix - From DNA Binding Towards Gene Therapy. Current Topics in Medicinal Chemistry, 2008, 8, 1187-1203.	1.0	64
69	iTube, YouTube, WeTube: Social Media Videos in Chemistry Education and Outreach. Journal of Chemical Education, 2014, 91, 1594-1599.	1.1	64
70	Supramolecular Solubilisation of Hydrophilic Dyes by Using Individual Dendritic Branches. Chemistry - A European Journal, 2001, 7, 4730-4739.	1.7	63
71	Quantifying the Effect of Surface Ligands on Dendron–DNA Interactions: Insights into Multivalency through a Combined Experimental and Theoretical Approach. Chemistry - A European Journal, 2010, 16, 4519-4532.	1.7	63
72	"Onâ€Off―Multivalent Recognition: Degradable Dendrons for Temporary Highâ€Affinity DNA Binding. Angewandte Chemie - International Edition, 2009, 48, 4047-4051.	7.2	62

#	Article	IF	CITATIONS
73	Calcium fluoride-supported alkali metal fluorides. New reagents for nucleophilic fluorine transfer reactions. Journal of the Chemical Society Chemical Communications, 1986, , 791.	2.0	61
74	Catalytic Gels for a Prebiotically Relevant Asymmetric Aldol Reaction in Water: From Organocatalyst Design to Hydrogel Discovery and Back Again. Journal of the American Chemical Society, 2020, 142, 4379-4389.	6.6	60
75	The Reaction Coordinate of a Bacterial GH47 αâ€Mannosidase: A Combined Quantum Mechanical and Structural Approach. Angewandte Chemie - International Edition, 2012, 51, 10997-11001.	7.2	57
76	Self-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients. Chemical Communications, 2015, 51, 7451-7454.	2.2	57
77	Spatially-resolved soft materials for controlled release – hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel. Chemical Science, 2017, 8, 7218-7227.	3.7	57
78	Palladium-scavenging self-assembled hybrid hydrogels – reusable highly-active green catalysts for Suzuki–Miyaura cross-coupling reactions. Chemical Science, 2018, 9, 8673-8681.	3.7	57
79	Selfâ€Assembling Supramolecular Hybrid Hydrogel Beads. Angewandte Chemie - International Edition, 2020, 59, 853-859.	7.2	57
80	Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron, 2007, 63, 7397-7406.	1.0	56
81	Selective electrochemical recognition of bidentate anionic guests in competitive solvents using novel ferrocenyl thiourea and guanidinium receptors. Journal of Organometallic Chemistry, 1997, 543, 259-261.	0.8	55
82	Selective electrochemical recognition of sulfate over phosphate and phosphate over sulfate using polyaza ferrocene macrocyclic receptors in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1999, , 127-134.	1.1	55
83	Controlling the materials properties and nanostructure of a single-component dendritic gel by adding a second component. Chemical Communications, 2005, , 385.	2.2	55
84	Multi-component hybrid hydrogels – understanding the extent of orthogonal assembly and its impact on controlled release. Chemical Science, 2017, 8, 6981-6990.	3.7	55
85	Fluorodenitrations using tetrabutylammonium fluoride. Tetrahedron Letters, 1985, 26, 2233-2236.	0.7	52
86	Cyclic and open-chain aza–oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments. Journal of the Chemical Society Dalton Transactions, 1999, , 2359-2370.	1.1	52
87	Self-assembly of two-component peptidic dendrimers: dendritic effects on gel-phase materials. Organic and Biomolecular Chemistry, 2004, 2, 2965.	1.5	49
88	A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule. Journal of Chemical Education, 2005, 82, 393.	1.1	49
89	Multidomain Hybrid Hydrogels: Spatially Resolved Photopatterned Synthetic Nanomaterials Combining Polymer and Lowâ€Molecularâ€Weight Gelators. Angewandte Chemie - International Edition, 2014, 53, 12461-12465.	7.2	47
90	A Dendritic Active Site:  Catalysis of the Henry Reaction. Organic Letters, 2001, 3, 3075-3078.	2.4	46

#	Article	IF	CITATIONS
91	Dendron-stabilised gold nanoparticles: generation dependence of core size and thermal stabilityElectronic supplementary information (ESI) available: TEM images of G1-Au, G2-Au, G3-Au complete with size distribution curves, and characterization data for dendrimers G2SSG2 and G1SSG1 and nanoparticles G1-Au and G2-Au. See http://www.rsc.org/suppdata/jm/b3/b312727c/. Journal of	6.7	46
92	Controlled Release of DNA From Photoresponsive Hyperbranched Polyglycerols with Oligoamine Shells. Macromolecular Bioscience, 2011, 11, 1736-1746.	2.1	46
93	Quantitative and structural investigations of hydrogen bonding interactions in anion binding of mono- and 1,1′-bis-substituted aryl cobaltocenium receptors. Journal of the Chemical Society Dalton Transactions, 1995, , 403-408.	1.1	45
94	Comparing dendritic and self-assembly strategies to multivalency—RGD peptide–integrin interactions. Organic and Biomolecular Chemistry, 2011, 9, 4795.	1.5	45
95	Metathesis within Self-Assembled Gels: Transcribing Nanostructured Soft Materials into a More Robust Form. Langmuir, 2009, 25, 8786-8793.	1.6	43
96	Self-organisation effects in dynamic nanoscale gels self-assembled from simple mixtures of commercially available molecular-scale components. Chemical Science, 2013, 4, 671-676.	3.7	43
97	Nanoscale self-assembled multivalent (SAMul) heparin binders in highly competitive, biologically relevant, aqueous media. Chemical Science, 2014, 5, 1484.	3.7	42
98	Controlled Release of a Dendritically Encapsulated Template Molecule. Angewandte Chemie - International Edition, 2002, 41, 3254-3257.	7.2	41
99	High resolution solid state 19F n.m.r. spectroscopy as a tool for the study of ionic fluorides. Journal of the Chemical Society Chemical Communications, 1986, , 657.	2.0	40
100	Hierarchical assembly—dynamic gel–nanoparticle hybrid soft materials based on biologically derived building blocks. Journal of Materials Chemistry, 2010, 20, 6696.	6.7	40
101	Rapid Screening of Binding Constants by Calibrated Competitive 1H NMR Spectroscopy. Chemistry - A European Journal, 2003, 9, 850-855.	1.7	39
102	Dendron-protected Au nanoparticles—Effect of dendritic structure on chemical stability. Journal of Colloid and Interface Science, 2006, 302, 178-186.	5.0	39
103	Nanostructured polymers with embedded self-assembled reactive gel networks. Chemical Communications, 2008, , 4601.	2.2	39
104	A simple new competition assay for heparin binding in serum applied to multivalent PAMAM dendrimers. Chemical Communications, 2013, 49, 4830.	2.2	39
105	Dendritic Biomimicry: Microenvironmental Hydrogen-Bonding Effects on Tryptophan Fluorescence. Chemistry - A European Journal, 2001, 7, 979-986.	1.7	38
106	Cation-responsive silver-selective organogel—exploiting silver–alkene interactions in the gel-phase. Chemical Communications, 2012, 48, 2767.	2.2	38
107	Exploring molecular recognition pathways in one- and two-component gels formed by dendritic lysine-based gelators. Soft Matter, 2012, 8, 3399.	1.2	38
108	Optimizing Biomimetic Gelators Constructed from Amino Acid Building Blocks. Journal of Organic Chemistry, 2007, 72, 3937-3940.	1.7	37

#	Article	IF	CITATIONS
109	Pyrene-based heparin sensors in competitive aqueous media – the role of self-assembled multivalency (SAMul). Chemical Communications, 2016, 52, 3785-3788.	2.2	37
110	Two-component supramolecular hydrogel for controlled drug release. Chemical Communications, 2020, 56, 11046-11049.	2.2	37
111	Selfâ€Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. Chemistry - A European Journal, 2020, 26, 8452-8457.	1.7	37
112	Encapsulated binding sites—synthetically simple receptors for the binding and transport of HCl. Chemical Communications, 2009, , 4299.	2.2	35
113	Controlled Selfâ€Assembly—Synthetic Tunability and Covalent Capture of Nanoscale Gel Morphologies. Chemistry - A European Journal, 2009, 15, 6340-6344.	1.7	33
114	Double-degradable responsive self-assembled multivalent arrays – temporary nanoscale recognition between dendrons and DNA. Organic and Biomolecular Chemistry, 2014, 12, 446-455.	1.5	33
115	Supramolecular dendritic solubilisation of a hydrophilic dye and tuning of its optical properties. Chemical Communications, 1999, , 1685-1686.	2.2	32
116	Self-assembled multivalent RGD-peptide arrays – morphological control and integrin binding. Organic and Biomolecular Chemistry, 2013, 11, 3177.	1.5	32
117	Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for in vivo applications. Journal of Materials Chemistry B, 2014, 2, 2153-2167.	2.9	32
118	Heparin versus DNA: Chiral Preferences in Polyanion Binding to Self-Assembled Multivalent (SAMul) Nanostructures. Journal of the American Chemical Society, 2015, 137, 10056-10059.	6.6	32
119	Dendritic biomimicry: microenvironmental effects on tryptophan fluorescenceâ€. Chemical Communications, 1999, , 1915-1916.	2.2	31
120	Anion binding at the core of branched ferrocene derivatives. Polyhedron, 2003, 22, 763-768.	1.0	31
121	Synthetically accessible, high-affinity phosphate anion receptors. Chemical Communications, 2007, , 3039.	2.2	31
122	Controlled Synthesis of Optically Active Polyaniline Nanorods and Nanostructured Gold Microspheres Using Tetrachloroaurate as an Efficient Oxidant of Aniline. Macromolecules, 2008, 41, 3417-3421.	2.2	31
123	Electrostatic binding of polyanions using self-assembled multivalent (SAMul) ligand displays – structure–activity effects on DNA/heparin binding. Chemical Science, 2016, 7, 4653-4659.	3.7	31
124	Enhanced Delivery of Neuroactive Drugs via Nasal Delivery with a Selfâ€Healing Supramolecular Gel. Advanced Science, 2021, 8, e2101058.	5.6	31
125	Commercially Relevant Orthogonal Multiâ€Component Supramolecular Hydrogels for Programmed Cell Growth. Chemistry - A European Journal, 2018, 24, 15112-15118.	1.7	29
126	Selfâ€Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Angewandte Chemie, 2019, 131, 4217-4222.	1.6	27

#	Article	IF	CITATIONS
127	Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents. Chemical Science, 2021, 12, 3958-3965.	3.7	27
128	Synergistic effects on gene delivery – co-formulation of small disulfide-linked dendritic polycations with Lipofectamine 2000â,,¢. Organic and Biomolecular Chemistry, 2009, 7, 789.	1.5	26
129	Sequential Assembly of Mutually Interactive Supramolecular Hydrogels and Fabrication of Multiâ€Domain Materials. Chemistry - A European Journal, 2019, 25, 11318-11326.	1.7	26
130	Spatial and temporal diffusion-control of dynamic multi-domain self-assembled gels. Chemical Science, 2021, 12, 4162-4172.	3.7	26
131	Robust gels created using a self-assembly and covalent capture strategy. Chemical Communications, 2005, , 5647.	2.2	25
132	Dendritic NanoparticlesThe Impact of Ligand Cross-Linking on Nanocore Stability. Langmuir, 2007, 23, 5787-5794.	1.6	25
133	Sorption of Metal Ions by Poly(ethylene glycol)/β-CD Hydrogels Leads to Gel-Embedded Metal Nanoparticles. Langmuir, 2013, 29, 9173-9178.	1.6	25
134	Synthesis and Characterization of Silica-Supportedl-Lysine-Based Dendritic Branches. Langmuir, 2002, 18, 8660-8665.	1.6	24
135	Structure–activity effects in peptide self-assembly and gelation – Dendritic versus linear architectures. Chemical Communications, 2012, 48, 7817.	2.2	24
136	Molecular gels—underpinning nanoscale materials with organic chemistry. Tetrahedron, 2007, 63, 7283-7284.	1.0	23
137	Syntheses of dendritic branches based on l-lysine: is the stereochemistry preserved throughout the synthesis?. Organic and Biomolecular Chemistry, 2003, 1, 2612.	1.5	22
138	Synthetically accessible, tunable, low-molecular-weight oligopeptide organogelators. Chemical Communications, 2011, 47, 340-342.	2.2	22
139	Multi-component supramolecular gels for the controlled crystallization of drugs: synergistic and antagonistic effects. CrystEngComm, 2015, 17, 8146-8152.	1.3	22
140	Prebiotic synthesis of 2-deoxy-d-ribose from interstellar building blocks promoted by amino esters or amino nitriles. Chemical Communications, 2017, 53, 10362-10365.	2.2	22
141	From fundamental supramolecular chemistry to self-assembled nanomaterials and medicines and back again – how Sam inspired SAMul. Chemical Communications, 2018, 54, 4743-4760.	2.2	22
142	Double diffusion for the programmable spatiotemporal patterning of multi-domain supramolecular gels. Chemical Science, 2021, 12, 12156-12164.	3.7	22
143	Chapter 9. Applications of Supramolecular Gels. Monographs in Supramolecular Chemistry, 2018, , 300-371.	0.2	22
144	Nanocomposite hydrogels—Controlled synthesis of chiral polyaniline nanofibers and their inclusion in agarose. Synthetic Metals, 2009, 159, 2135-2140.	2.1	21

#	Article	IF	CITATIONS
145	Fluorescent â€~two-faced' polymer wafers with embedded pyrene-functionalised gelator nanofibres. Chemical Communications, 2011, 47, 11864.	2.2	21
146	Shapeâ€Persistent and Adaptive Multivalency: Rigid Transgeden (TGD) and Flexible PAMAM Dendrimers for Heparin Binding. Chemistry - A European Journal, 2014, 20, 9666-9674.	1.7	21
147	Ion exchange in alginate gels – dynamic behaviour revealed by electron paramagnetic resonance. Soft Matter, 2015, 11, 8968-8974.	1.2	21
148	Branched ferrocene derivatives: using redox potential to probe the dendritic interior â€. Journal of the Chemical Society Perkin Transactions II, 1999, , 1563-1566.	0.9	20
149	Speed versus stability – structure–activity effects on the assembly of two-component gels. RSC Advances, 2015, 5, 27190-27196.	1.7	20
150	Emergence of highly-ordered hierarchical nanoscale aggregates on electrostatic binding of self-assembled multivalent (SAMul) cationic micelles with polyanionic heparin. Journal of Materials Chemistry B, 2017, 5, 341-347.	2.9	20
151	Copper amino-acid complexes – towards encapsulated metal centres. Polyhedron, 2004, 23, 1709-1717.	1.0	19
152	Crown ether functionalised dendrons—controlled binding and release of dopamine in both solution and gel-phases. New Journal of Chemistry, 2007, 31, 1243-1249.	1.4	19
153	Photo-patterned multi-domain multi-component hybrid hydrogels. Chemical Communications, 2020, 56, 7029-7032.	2.2	19
154	From crazy chemists to engaged learners through education. Nature Chemistry, 2011, 3, 681-684.	6.6	18
155	<i>In situ</i> aldehyde-modification of self-assembled acyl hydrazide hydrogels and dynamic component selection from complex aldehyde mixtures. Chemical Communications, 2019, 55, 1947-1950.	2.2	18
156	The race to the bottom and the route to the top. Nature Chemistry, 2020, 12, 101-103.	6.6	18
157	Chiral recognition at self-assembled multivalent (SAMul) nanoscale interfaces – enantioselectivity in polyanion binding. Chemical Communications, 2016, 52, 10540-10543.	2.2	17
158	Diffusion across a gel–gel interface – molecular-scale mobility of self-assembled â€~solid-like' gel nanofibres in multi-component supramolecular organogels. Chemical Science, 2018, 9, 5541-5550.	3.7	17
159	Tuning gelled lyotropic liquid crystals (LLCs) – probing the influence of different low molecular weight gelators on the phase diagram of the system H2O/NaCl–Genapol LA070. Soft Matter, 2019, 15, 3111-3121.	1.2	17
160	Hybrid hydrogels loaded with palladium nanoparticles – Catalysts for environmentally-friendly Sonogashira and Heck cross-coupling reactions. Tetrahedron, 2020, 76, 131344.	1.0	17
161	High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 957-963.	2.5	16
162	Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles. ACS Biomaterials Science and Engineering, 2022, 8, 1829-1840.	2.6	16

#	Article	IF	CITATIONS
163	Selfâ€Assembled Multivalent (SAMul) Polyanion Binding—Impact of Hydrophobic Modifications in the Micellar Core on DNA and Heparin Binding at the Peripheral Cationic Ligands. Chemistry - A European Journal, 2017, 23, 6391-6397.	1.7	15
164	Effect of buffer at nanoscale molecular recognition interfaces – electrostatic binding of biological polyanions. Chemical Communications, 2017, 53, 11580-11583.	2.2	15
165	Chiral Assembly Preferences and Directing Effects in Supramolecular Two-Component Organogels. Gels, 2018, 4, 31.	2.1	15
166	NMR and ESR investigations of the interaction between a carboxylic acid and an amine at the focal point of I-lysine based dendritic branches. Organic and Biomolecular Chemistry, 2004, 2, 922.	1.5	14
167	Morphological control of self-assembled multivalent (SAMul) heparin binding in highly competitive media. Chemical Communications, 2017, 53, 6335-6338.	2.2	14
168	Enantiomeric and Diastereomeric Selfâ€Assembled Multivalent Nanostructures: Understanding the Effects of Chirality on Binding to Polyanionic Heparin and DNA. Angewandte Chemie - International Edition, 2018, 57, 8530-8534.	7.2	14
169	Chirality-directed hydrogel assembly and interactions with enantiomers of an active pharmaceutical ingredient. Chemical Communications, 2022, 58, 3941-3944.	2.2	14
170	First-generation shaped gel reactors based on photo-patterned hybrid hydrogels. Reaction Chemistry and Engineering, 2020, 5, 1112-1117.	1.9	13
171	Decolonizing the Undergraduate Chemistry Curriculum: An Account of How to Start. Journal of Chemical Education, 2022, 99, 5-9.	1.1	13
172	Modular construction and hierarchical gelation of organooxotin nanoclusters derived from simple building blocks. Chemical Communications, 2007, , 4943.	2.2	12
173	Microscale vapour diffusion for protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1009-1015.	2.5	12
174	Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures. Organic and Biomolecular Chemistry, 2012, 10, 8403.	1.5	12
175	Self-assembled gel tubes, filaments and 3D-printing with <i>in situ</i> metal nanoparticle formation and enhanced stem cell growth. Chemical Science, 2022, 13, 1972-1981.	3.7	12
176	Controlled Release of a Dendritically Encapsulated Template Molecule. Angewandte Chemie, 2002, 114, 3388-3391.	1.6	11
177	Use of the Mid-Lecture Break in Chemistry Teaching: A Survey and Some Suggestions. Journal of Chemical Education, 2006, 83, 1621.	1.1	11
178	Self-Assembled Nanomicelles as Curcumin Drug Delivery Vehicles: Impact on Solitary Fibrous Tumor Cell Protein Expression and Viability. Molecular Pharmaceutics, 2018, 15, 4689-4701.	2.3	11
179	Selfâ€Propelling Hybrid Gels Incorporating an Active Selfâ€Assembled, Lowâ€Molecularâ€Weight Gelator. Chemistry - A European Journal, 2021, 27, 14527-14534.	1.7	10
180	High-performance liquid chromatography applications of optical rotation detection with compensation for scattering and absorbance at the laser wavelength. Journal of Chromatography A, 2001, 939, 41-48.	1.8	9

#	Article	IF	CITATIONS
181	Effect of buffer on heparin binding and sensing in competitive aqueous media. Supramolecular Chemistry, 2017, 29, 688-695.	1.5	9
182	Hybrid Selfâ€Assembled Gel Beads for Tuneable pHâ€Controlled Rosuvastatin Delivery. Chemistry - A European Journal, 2021, 27, 13203-13210.	1.7	9
183	Probing dendron structure and nanoscale self-assembly using computer-aided analysis of EPR spectra. New Journal of Chemistry, 2012, 36, 469-476.	1.4	8
184	Mallard Blue binding to heparin, its SDS micelle-driven de-complexation, and interaction with human serum albumin: A combined experimental/modeling investigation. Fluid Phase Equilibria, 2018, 470, 259-267.	1.4	8
185	Dendritic lanthanide complexes and the effect of Lewis-acid encapsulation. Dalton Transactions, 2003, , 3902.	1.6	7
186	Using EPR Spectroscopy as a Unique Probe of Molecular-Scale Reorganization and Solvation in Self-Assembled Gel-Phase Materials. Langmuir, 2014, 30, 9210-9218.	1.6	7
187	Conductive Gels Based on Modified Agarose Embedded with Gold Nanoparticles and their Application as a Conducting Support for <i>Shewanella Oneidensis</i> MRâ€1. ChemElectroChem, 2019, 6, 5876-5879.	1.7	7
188	Selfâ€Assembling Supramolecular Hybrid Hydrogel Beads. Angewandte Chemie, 2020, 132, 863-869.	1.6	7
189	Triggering a transient organo-gelation system in a chemically active solvent. Chemical Communications, 2021, 57, 10375-10378.	2.2	6
190	What Makes a Professional Chemist? Embedding Equality, Diversity, and Inclusion into Chemistry Skills Training for Undergraduates. Journal of Chemical Education, 2022, 99, 480-486.	1.1	6
191	Techniques for the Characterisation of Molecular Gels. RSC Soft Matter, 2013, , 30-66.	0.2	5
192	Self-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serum. Biomaterials Science, 2019, 7, 3812-3820.	2.6	4
193	A Personal Matter?. Matter, 2019, 1, 1439-1442.	5.0	4
194	Dendritic receptors designed to bind polyanions in both organic and aqueous media. Organic and Biomolecular Chemistry, 2007, 5, 900.	1.5	3
195	Characterization of Dendrimers and Their Interactions with Biomolecules for Medical use by Means of Electron Magnetic Resonance. , 2013, , 115-133.		3
196	Calcium fluoride supported alkali metal fluorides — New reagents for nucleophilic fluorine transfer reactions. Journal of Fluorine Chemistry, 1987, 35, 37.	0.9	2
197	Multiscale Modeling of Dendrimers and Dendrons for Drug and Nucleic Acid Delivery. , 2013, , 148-166.		1
198	Supramolecular Dendrimer Chemistry: Using Dendritic Crown Ethers to Reversibly Generate Functional Assemblies ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
199	Macromol. Biosci. 12/2011. Macromolecular Bioscience, 2011, 11, 1735-1735.	2.1	0
200	Innenrücktitelbild: The Reaction Coordinate of a Bacterial GH47 α-Mannosidase: A Combined Quantum Mechanical and Structural Approach (Angew. Chem. 44/2012). Angewandte Chemie, 2012, 124, 11333-11333.	1.6	0
201	From Multivalent Dendrons to Selfâ€asssembled Multivalent Dendrimers: a Combined Experimental and Theoretical Approach. , 2013, , 179-199.		0
202	Enantiomeric and Diastereomeric Selfâ€Assembled Multivalent Nanostructures: Understanding the Effects of Chirality on Binding to Polyanionic Heparin and DNA. Angewandte Chemie, 2018, 130, 8666-8670.	1.6	0