Bhuvanesh Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7123896/publications.pdf

Version: 2024-02-01

123 5,371 36 69
papers citations h-index g-index

124 124 124 6476
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Surface features and patterning in hydrolytic functionalization of polyurethane films. Polymer Bulletin, 2022, 79, 2305-2319.	1.7	5
2	Preparation of thyme oil loaded \hat{l}^{e} -carrageenan-polyethylene glycol hydrogel membranes as wound care system. International Journal of Pharmaceutics, 2022, 618, 121661.	2.6	21
3	Development of silver immobilized biofunctional PET Fabric for antimicrobial wound dressing. Journal of Polymer Research, 2022, 29, 1.	1.2	2
4	Functionalization of polyurethane for infectionâ€resistance surface. Journal of Applied Polymer Science, 2022, 139, .	1.3	4
5	Silver Nanoparticle-Embedded Nanogels for Infection-Resistant Surfaces. ACS Applied Nano Materials, 2022, 5, 8546-8556.	2.4	5
6	Development of sodium alginate/glycerol/tannic acid coated cotton as antimicrobial system. International Journal of Biological Macromolecules, 2022, 216, 303-311.	3.6	28
7	Bioactive Khadi Cotton Fabric by Functional Designing and Immobilization of Nanosilver Nanogels. ACS Applied Bio Materials, 2021, 4, 5449-5460.	2.3	13
8	Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers, 2021, 13, 3102.	2.0	18
9	Bioactive polypropylene by plasma processing. , 2021, , 481-489.		1
10	Novel Tragacanth Gum-Entrapped lecithin nanogels for anticancer drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 604-609.	1.8	22
11	Gelatin-polytrimethylene carbonate blend based electrospun tubular construct as a potential vascular biomaterial. Materials Science and Engineering C, 2020, 106, 110178.	3.8	21
12	Preparation and biological characterization of plasma functionalized poly(ethylene terephthalate) antimicrobial sutures. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1034-1042.	1.8	13
13	Novel thymoquinone loaded chitosan-lecithin micelles for effective wound healing: Development, characterization, and preclinical evaluation. Carbohydrate Polymers, 2020, 230, 115659.	5.1	38
14	Smart Designing of Tragacanth Gum by Graft Functionalization for Advanced Materials. Macromolecular Materials and Engineering, 2020, 305, 1900762.	1.7	13
15	Preparation of pHâ€sensitive hydrogels by graft polymerization of itaconic acid on tragacanth gum. Polymer International, 2019, 68, 344-350.	1.6	23
16	Novel Approach for Nanobiocomposites by Nanoencapsulation of Lecithin-Clove oil within PVA Nanofibrous Web. Materials Today: Proceedings, 2019, 15, 183-187.	0.9	6
17	Electrospun microporous gelatin–polycaprolactone blend tubular scaffold as a potential vascular biomaterial. Polymer International, 2019, 68, 1367-1377.	1.6	9
18	Investigation of the herbal synthesis of silver nanoparticles using Cinnamon zeylanicum extract. Emergent Materials, 2019, 2, 113-122.	3.2	34

#	Article	IF	CITATIONS
19	Polysaccharide-Aloe vera Bioactive Hydrogels as Wound Care System. Polymers and Polymeric Composites, 2019, , 1473-1490.	0.6	2
20	Preparation of novel tragacanth gum-entrapped lecithin nanogelsÂ. Advanced Materials Letters, 2019, 10, 267-269.	0.3	3
21	Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels. Advanced Materials Letters, 2019, 10, 711-714.	0.3	1
22	Dextran based herbal nanobiocomposite membranes for scar free wound healing. International Journal of Biological Macromolecules, 2018, 113, 227-239.	3.6	44
23	Cover Image, Volume 67, Issue 3. Polymer International, 2018, 67, i.	1.6	0
24	Biomodification Strategies for the Development of Antimicrobial Urinary Catheters: Overview and Advances. Global Challenges, 2018, 2, 1700068.	1.8	42
25	Calcium ionâ€induced selfâ€healing pattern of chemically crosslinked poly(acrylic acid) hydrogels. Polymer International, 2018, 67, 250-257.	1.6	11
26	Gelatin â€" Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. International Journal of Biological Macromolecules, 2018, 107, 1922-1935.	3.6	51
27	Bioengineering of Functional Nanosilver Nanogels for Smart Healthcare Systems. Global Challenges, 2018, 2, 1800044.	1.8	14
28	Designing and Nanofunctionalization of Infection-Resistant Polyester Suture. Materials Horizons, 2018, , 1-12.	0.3	2
29	Scar free healing mediated by the release of aloe vera and manuka honey from dextran bionanocomposite wound dressings. International Journal of Biological Macromolecules, 2018, 120, 1581-1590.	3.6	42
30	Polysaccharide–Aloe vera Bioactive Hydrogels as Wound Care System. Polymers and Polymeric Composites, 2018, , 1-18.	0.6	0
31	Development and characterization of nanosoyâ€reinforced dextran nanocomposite membranes. Journal of Applied Polymer Science, 2017, 134, .	1.3	7
32	Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer, 2017, 126, 196-205.	1.8	44
33	Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. Journal of Bioactive and Compatible Polymers, 2017, 32, 263-279.	0.8	24
34	Preparation And Bactericidal Action Of Biofunctional Polyacrylamide Nanogels. Advanced Materials Letters, 2017, 8, 13-18.	0.3	7
35	Understanding the <i>in situ</i> crosslinked gelatin hydrogel. Polymer International, 2016, 65, 181-191.	1.6	10
36	Effect of CO2 plasma exposure on physico-chemical properties of porous polycaprolactone scaffold. Polymer Bulletin, 2016, 73, 1875-1890.	1.7	8

3

#	Article	IF	Citations
37	Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing. International Journal of Pharmaceutics, 2016, 505, 234-245.	2.6	55
38	Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. International Journal of Pharmaceutics, 2016, 508, 92-101.	2.6	168
39	Sizeâ€controlled preparation of nanosoy for potential biomedical applications. Polymer International, 2016, 65, 1373-1381.	1.6	10
40	Skin compatibility and antimicrobial studies on biofunctionalized polypropylene fabric. Materials Science and Engineering C, 2016, 69, 1043-1050.	3.8	25
41	Physicochemical characteristics of glycerolâ€plasticized dextran/soy protein isolate composite membranes. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
42	Antimicrobial Surgical Sutures: Recent Developments and Strategies. Polymer Reviews, 2016, 56, 607-630.	5. 3	39
43	Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. International Journal of Biological Macromolecules, 2016, 82, 104-113.	3.6	131
44	Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Materials Science and Engineering C, 2016, 64, 157-166.	3.8	98
45	A Novel Route for the Preparation of Silver Loaded Polyvinyl Alcohol Nanogels for Wound Care Systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 894-905.	1.8	27
46	Preparation and Evaluation of Functionalized Poly(vinyl alcohol)-Based Hydrogels for Arsenite Removal from Water. Polymer-Plastics Technology and Engineering, 2015, 54, 786-795.	1.9	3
47	Fabrication of Smooth Electrospun Nanofibrous Gelatin Mat for Potential Application in Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 509-518.	1.8	8
48	Facile and green synthesis of silver nanoparticles using oxidized pectin. Materials Science and Engineering C, 2015, 50, 31-36.	3.8	39
49	A UV-Vis Spectrophotometric Method for the Estimation of Aldehyde Groups in Periodate-Oxidized Polysaccharides Using <i>2,4 </i> -Dinitrophenyl Hydrazine. Journal of Carbohydrate Chemistry, 2015, 34, 338-348.	0.4	29
50	Preparation and characterization of in-situ crosslinked pectin–gelatin hydrogels. Carbohydrate Polymers, 2014, 106, 312-318.	5.1	77
51	Antimicrobial and release study of drug loaded PVA/PEO/CMC wound dressings. Journal of Materials Science: Materials in Medicine, 2014, 25, 1613-1622.	1.7	28
52	Radiationâ€induced graft copolymerization of αâ€methyl styrene and butyl acrylate mixture into polyetheretherketone films. Journal of Applied Polymer Science, 2013, 128, 1854-1860.	1.3	1
53	Preparation and characterization of polyvinyl alcoholâ€polyethylene oxideâ€carboxymethyl cellulose blend membranes. Journal of Applied Polymer Science, 2013, 127, 1301-1308.	1.3	84
54	Surface modification of polycaprolactone monofilament by low pressure oxygen plasma. Journal of Applied Polymer Science, 2013, 127, 1744-1750.	1.3	7

#	Article	IF	CITATIONS
55	Determination of intrinsic birefringence values of polycaprolactone filaments. Polymer International, 2013, 62, 49-53.	1.6	11
56	Drug release studies of N-isopropyl acrylamide/acrylic acid grafted polypropylene nonwoven fabric. Journal of Polymer Research, 2013, 20, 1.	1.2	17
57	Characterization and physiochemical studies of crosslinked thiolated polyvinyl alcohol hydrogels. Polymer Bulletin, 2013, 70, 2709-2725.	1.7	8
58	Physicochemical studies of crosslinked thiolated polyvinyl alcohol hydrogels. Polymer Bulletin, 2013, 70, 2437-2450.	1.7	10
59	Polyvinyl alcoholâ€polyethylene oxideâ€carboxymethyl cellulose membranes for drug delivery. Journal of Applied Polymer Science, 2013, 129, 3728-3736.	1.3	38
60	Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid). Radiation Physics and Chemistry, 2013, 92, 54-60.	1.4	23
61	Functionalization of pectin by periodate oxidation. Carbohydrate Polymers, 2013, 98, 1160-1165.	5.1	72
62	Preparation of proton exchange membranes by radiation-induced grafting of alpha methyl styrene–butyl acrylate mixture onto polyetheretherketone (PEEK) films. Polymer Bulletin, 2013, 70, 2691-2708.	1.7	4
63	Preparation of thiolated polyvinyl alcohol hydrogels. Journal of Applied Polymer Science, 2013, 129, 815-821.	1.3	14
64	Structural characterization of alpha methyl styreneâ€butyl acrylateâ€grafted polyetheretherketone films. Journal of Applied Polymer Science, 2013, 128, 3205-3212.	1.3	6
65	A Novel Route to Polycaprolactone Scaffold for Vascular Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 2013, 3, 289-299.	0.0	10
66	Preparation of Curcumin Loaded Poly(Vinyl Alcohol)-Poly(Ethylene Oxide)-Carboxymethyl Cellulose Membranes for Wound Care Application. Journal of Biomaterials and Tissue Engineering, 2013, 3, 273-283.	0.0	23
67	Aloe Vera Loaded Poly(Vinyl Alcohol)–Poly(Ethylene Oxide)-Carboxymethyl Cellulose-Polyester Nonwoven Membranes. Journal of Biomaterials and Tissue Engineering, 2013, 3, 503-511.	0.0	10
68	Preparation of Tubular Porous Polycaprolactone Scaffold by Precoagulation Evaporation (PCE) Method. Journal of Biomaterials and Tissue Engineering, 2013, 3, 523-533.	0.0	2
69	Oxygen plasma-induced graft polymerization of acrylic acid on polycaprolactone monofilament. European Polymer Journal, 2012, 48, 1940-1948.	2.6	28
70	Characterization of N-isopropyl acrylamide/acrylic acid grafted polypropylene nonwoven fabric developed by radiation-induced graft polymerization. Radiation Physics and Chemistry, 2012, 81, 1729-1735.	1.4	19
71	Preparation of porous polycaprolactone tubular matrix by salt leaching process. Journal of Applied Polymer Science, 2012, 126, 1505-1510.	1.3	10
72	Preparation of poly(εâ€caprolactone)/poly(εâ€caprolactoneâ€ <i>co</i> â€lactide) (PCL/PLCL) blend filament by melt spinning. Journal of Applied Polymer Science, 2012, 123, 1944-1950.	1.3	46

#	Article	IF	CITATIONS
73	Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric. Radiation Physics and Chemistry, 2011, 80, 50-56.	1.4	21
74	Development of a New Polypropyleneâ€Based Suture: Plasma Grafting, Surface Treatment, Characterization, and Biocompatibility Studies. Macromolecular Bioscience, 2011, 11, 373-382.	2.1	91
75	Studies on the Amidoximation of Polyacrylonitrile Films: Influence of Synthesis Conditions. Journal of Applied Polymer Science, 2011, 121, 2705-2709.	1.3	16
76	Radiation grafting of acrylic acid/ <i>N</i> â€vinyl pyrrolidone binary mixture onto poly(ethylene) Tj ETQq0 0 0 rgBT Science, 2010, 115, 116-126.		2 10 Tf 50 6 8
77	Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma. Journal of Applied Polymer Science, 2010, 116, 2884-2892.	1.3	17
78	Characterization of acrylic acid grafted poly(ethylene terephthalate) fabric. Journal of Applied Polymer Science, 2010, 117, 3498-3505.	1.3	4
79	Chitosan immobilization on polyacrylic acid grafted polypropylene monofilament. Carbohydrate Polymers, 2010, 82, 1315-1322.	5.1	40
80	Plasmaâ€Induced Graft Polymerization of Acrylic Acid onto Poly(propylene) Monofilament: Characterization. Plasma Processes and Polymers, 2010, 7, 610-618.	1.6	14
81	Preparation and properties of PLLA/PLCL fibres for potential use as a monofilament suture. Journal of the Textile Institute, 2010, 101, 835-841.	1.0	7
82	Radiation grafting of acrylic acid onto poly(ethylene terephthalate) fabric. Journal of Applied Polymer Science, 2009, 112, 1199-1208.	1.3	23
83	Preparation of chitosan–polyethylene glycol coated cotton membranes for wound dressings: preparation and characterization. Polymers for Advanced Technologies, 2009, 20, 58-65.	1.6	41
84	Preparation of antimicrobial sutures by preirradiation grafting onto polypropylene monofilament. Polymers for Advanced Technologies, 2008, 19, 1698-1703.	1.6	32
85	Plasma induced graft polymerization of acrylic acid onto polypropylene monofilament. Journal of Applied Polymer Science, 2008, 107, 324-330.	1.3	36
86	Preparation of ion exchange membranes by radiation grafting of acrylic acid on FEP films. Radiation Physics and Chemistry, 2008, 77, 42-48.	1.4	29
87	Preparation of thermosensitive membranes by radiation grafting of acrylic acid/N-isopropyl acrylamide binary mixture on PET fabric. Radiation Physics and Chemistry, 2008, 77, 553-560.	1.4	40
88	Radiation Grafted Membranes. , 2008, , 157-217.		21
89	Development of antimicrobial polypropylene sutures by graft copolymerization. II. Evaluation of physical properties, drug release, and antimicrobial activity. Journal of Applied Polymer Science, 2007, 103, 3534-3538.	1.3	36
90	In vitro degradation of dry-jet-wet spun poly(lactic acid) monofilament and knitted scaffold. Journal of Applied Polymer Science, 2007, 103, 2006-2012.	1.3	9

#	Article	IF	Citations
91	Poly(lactic acid) fiber: An overview. Progress in Polymer Science, 2007, 32, 455-482.	11.8	1,147
92	Radiation-induced graft modification of knitted poly(ethylene terephthalate) fabric for collagen immobilization. Polymers for Advanced Technologies, 2007, 18, 281-285.	1.6	17
93	Preirradiation grafting of acrylonitrile onto polypropylene monofilament for biomedical applications: I. Influence of synthesis conditions. Radiation Physics and Chemistry, 2006, 75, 161-167.	1.4	42
94	Preparation of poly(lactic acid) fiber by dry-jet-wet-spinning. I. Influence of draw ratio on fiber properties. Journal of Applied Polymer Science, 2006, 100, 1239-1246.	1.3	71
95	Preparation of poly(lactic acid) fiber by dry–jet–wet spinning. II. Effect of process parameters on fiber properties. Journal of Applied Polymer Science, 2006, 101, 3774-3780.	1.3	39
96	Surface designing of polypropylene by critical monitoring of the grafting conditions: Structural investigations. Journal of Applied Polymer Science, 2006, 101, 772-778.	1.3	28
97	Development of antimicrobial polypropylene sutures by graft polymerization. I. Influence of grafting conditions and characterization. Journal of Applied Polymer Science, 2006, 101, 3895-3901.	1.3	41
98	Development of Membranes by Radiationâ€Induced Graft Polymerization of Monomers onto Polyethylene Films. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2004, 44, 275-309.	2.2	28
99	Surface modification of polyacrylonitrile staple fibers via alkaline hydrolysis for superabsorbent applications. Journal of Applied Polymer Science, 2004, 91, 3127-3133.	1.3	59
100	Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. II. Mechanical, physical, and thermal characteristics. Journal of Applied Polymer Science, 2004, 93, 1224-1229.	1.3	20
101	Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. III. Hydrolysis of the grafted suture. Journal of Applied Polymer Science, 2004, 94, 2509-2516.	1.3	25
102	Preparation of ion-exchange membranes by hydrolysis of radiation-grafted polyethylene-g-polyacrylamide membranes. Journal of Applied Polymer Science, 2003, 90, 149-154.	1.3	6
103	Preparation of ion-exchange membranes by the hydrolysis of radiation-grafted polyethylene-g-polyacrylamide films: Properties and metal-ion separation. Journal of Applied Polymer Science, 2003, 90, 3747-3752.	1.3	12
104	Plasma and Radiation-Induced Graft Modification of Polymers for Biomedical Applications. Advances in Polymer Science, 2003, , 35-61.	0.4	40
105	Development of membranes by radiation grafting of acrylamide into polyethylene films: Properties and metal ion separation. Journal of Applied Polymer Science, 2002, 85, 282-291.	1.3	19
106	Thermal crosslinking of collagen immobilized on poly(acrylic acid) grafted poly(ethylene) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 142 Td (1
107	Surface structure of radiation-grafted polyethylene-g-polyacrylamide films. Journal of Applied Polymer Science, 2002, 86, 1118-1122.	1.3	19
108	Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials, 2002, 23, 863-871.	5.7	311

#	Article	IF	CITATIONS
109	Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials, 2002, 23, 3149-3158.	5.7	148
110	Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films. Journal of Applied Polymer Science, 2001, 81, 2993-3001.	1.3	114
111	Development of membranes by radiation grafting of acrylamide into polyethylene films: Characterization and thermal investigations. Journal of Applied Polymer Science, 2001, 82, 2629-2635.	1.3	40
112	Development of membranes by radiation grafting of acrylamide into polyethylene films: Influence of synthesis conditions. Journal of Applied Polymer Science, 2000, 77, 1331-1337.	1.3	25
113	Influence of solvents on radiation-induced graft copolymerization of acrylamide into polyethylene films. Journal of Applied Polymer Science, 2000, 77, 1401-1404.	1.3	37
114	Modified polypropylene fibers with enhanced moisture absorption and disperse dyeability. Journal of Applied Polymer Science, 1999, 73, 2293-2297.	1.3	15
115	Modification of polypropylene fiber by radiation-induced graft copolymerization of acrylonitrile monomer. Journal of Applied Polymer Science, 1998, 69, 1343-1348.	1.3	33
116	Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. Properties of copolymer membranes. Journal of Polymer Science Part A, 1996, 34, 1873-1880.	2.5	56
117	Crosslinked ion exchange membranes by radiation grafting of styrene/divinylbenzene into FEP films. Journal of Membrane Science, 1996, 118, 231-238.	4.1	77
118	Proton exchange membranes by radiation grafting of styrene onto FEP films. IV. Evaluation of the states of water. Journal of Applied Polymer Science, 1995, 57, 855-862.	1.3	32
119	Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochimica Acta, 1995, 40, 345-353.	2.6	261
120	Performance of Differently Crossâ€Linked, Partially Fluorinated Proton Exchange Membranes in Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 1995, 142, 3044-3048.	1.3	91
121	Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. I. Influence of synthesis conditions. Journal of Polymer Science Part A, 1994, 32, 1931-1938.	2.5	138
122	Development of radiation-grafted FEP-g-polystyrene membranes: Some property–structure correlations. Polymers for Advanced Technologies, 1994, 5, 493-498.	1.6	64
123	Proton exchange membranes by radiation grafting of styrene onto fep films. III. Structural investigation. Journal of Applied Polymer Science, 1994, 54, 469-476.	1.3	40