Brad Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7123837/publications.pdf

Version: 2024-02-01

110317 94381 6,190 64 37 64 citations h-index g-index papers 73 73 73 6608 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 2006, 124, 803-814.	13.5	2,467
2	Molecular Basis for the RIN4 Negative Regulation of RPS2 Disease Resistance. Plant Cell, 2005, 17, 1292-1305.	3.1	153
3	The cucurbit downy mildew pathogen <i>Pseudoperonospora cubensis</i> . Molecular Plant Pathology, 2011, 12, 217-226.	2.0	151
4	A nod factor binding lectin with apyrase activity from legume roots. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5856-5861.	3.3	149
5	Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2087-2092.	3.3	143
6	The Plant Actin Cytoskeleton Responds to Signals from Microbe-Associated Molecular Patterns. PLoS Pathogens, 2013, 9, e1003290.	2.1	143
7	NDR1 Interaction with RIN4 Mediates the Differential Activation of Multiple Disease Resistance Pathways in Arabidopsis. Plant Cell, 2006, 18, 2782-2791.	3.1	141
8	Arabidopsis Actin-Depolymerizing Factor AtADF4 Mediates Defense Signal Transduction Triggered by the <i>Pseudomonas syringae</i> Effector AvrPphB Â Â. Plant Physiology, 2009, 150, 815-824.	2.3	141
9	Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. Plant Journal, 2004, 40, 225-237.	2.8	136
10	Molecular Genetic Evidence for the Role of SGT1 in the Intramolecular Complementation of Bs2 Protein Activity in Nicotiana benthamiana. Plant Cell, 2005, 17, 1268-1278.	3.1	133
11	ACTIN DEPOLYMERIZING FACTOR4 Regulates Actin Dynamics during Innate Immune Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 340-352.	3.1	129
12	Arabidopsis NDR1 Is an Integrin-Like Protein with a Role in Fluid Loss and Plasma Membrane-Cell Wall Adhesion Â. Plant Physiology, 2011, 156, 286-300.	2.3	127
13	The Pathogen-Actin Connection: A Platform for Defense Signaling in Plants. Annual Review of Phytopathology, 2011, 49, 483-506.	3.5	115
14	454 Genome Sequencing of <i>Pseudoperonospora cubensis</i> Reveals Effector Proteins with a QXLR Translocation Motif. Molecular Plant-Microbe Interactions, 2011, 24, 543-553.	1.4	110
15	Legume nodule organogenesis. Trends in Plant Science, 1998, 3, 105-110.	4.3	106
16	<i>Arabidopsis</i> Actin Depolymerizing Factor4 Modulates the Stochastic Dynamic Behavior of Actin Filaments in the Cortical Array of Epidermal Cells Â. Plant Cell, 2011, 23, 3711-3726.	3.1	106
17	Binding Site for Chitin Oligosaccharides in the Soybean Plasma Membrane. Plant Physiology, 2001, 126, 1162-1173.	2.3	97
18	The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host and Microbe, 2018, 24, 379-391.e5.	5.1	95

#	Article	IF	CITATIONS
19	Geneâ€forâ€gene relationship in the host–pathogen system <i><scp>M</scp>alusÂ</i> ×Â <i>robusta</i> 5– <i><scp>E</scp>rwinia amylovora</i> . New Phytologist, 2013, 197, 1262-1275.	3.5	88
20	Arabidopsis Actin-Depolymerizing Factor-4 Links Pathogen Perception, Defense Activation and Transcription to Cytoskeletal Dynamics. PLoS Pathogens, 2012, 8, e1003006.	2.1	86
21	From filaments to function: The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity. Journal of Integrative Plant Biology, 2016, 58, 299-311.	4.1	71
22	Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nature Communications, 2015, 6, 7206.	5.8	68
23	The Lifecycle of the Plant Immune System. Critical Reviews in Plant Sciences, 2020, 39, 72-100.	2.7	68
24	mRNA-Seq Analysis of the Pseudoperonospora cubensis Transcriptome During Cucumber (Cucumis) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
25	Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles. Biosensors and Bioelectronics, 2018, 101, 29-36.	5. 3	64
26	Two Rice GRAS Family Genes Responsive to N-Acetylchitooligosaccharide Elicitor are Induced by Phytoactive Gibberellins: Evidence for Cross-Talk Between Elicitor and Gibberellin Signaling in Rice Cells. Plant Molecular Biology, 2004, 54, 261-272.	2.0	62
27	The <i>Pseudomonas syringae</i> Type III Effector HopG1 Induces Actin Remodeling to Promote Symptom Development and Susceptibility during Infection. Plant Physiology, 2016, 171, 2239-2255.	2.3	59
28	Alternative Splicing of a Multi-Drug Transporter from Pseudoperonospora cubensis Generates an RXLR Effector Protein That Elicits a Rapid Cell Death. PLoS ONE, 2012, 7, e34701.	1.1	57
29	Expression Profiling of Cucumis sativus in Response to Infection by Pseudoperonospora cubensis. PLoS ONE, 2012, 7, e34954.	1.1	54
30	The role of NDR1 in pathogen perception and plant defense signaling. Plant Signaling and Behavior, 2011, 6, 1114-1116.	1.2	47
31	What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions?. Molecular Plant-Microbe Interactions, 2020, 33, 1354-1365.	1.4	47
32	TaARPC3, Contributes to Wheat Resistance against the Stripe Rust Fungus. Frontiers in Plant Science, 2017, 8, 1245.	1.7	46
33	Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. Molecular Plant-Microbe Interactions, 2019, 32, 25-34.	1.4	46
34	Transcriptome and Small RNAome Dynamics during a Resistant and Susceptible Interaction between Cucumber and Downy Mildew. Plant Genome, 2016, 9, plantgenome2015.08.0069.	1.6	45
35	Genome-Wide Identification of Cyclic Nucleotide-Gated Ion Channel Gene Family in Wheat and Functional Analyses of TaCNGC14 and TaCNGC16. Frontiers in Plant Science, 2018, 9, 18.	1.7	44
36	From Perception to Activation: The Molecular-Genetic and Biochemical Landscape of Disease Resistance Signaling in Plants. The Arabidopsis Book, 2010, 8, e012.	0.5	41

#	Article	IF	CITATIONS
37	The inclusion of downy mildews in a multi-locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora. IMA Fungus, 2011, 2, 163-171.	1.7	41
38	Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast. Plant Cell, 2020, 32, 1161-1178.	3.1	37
39	An important role of <scp> </scp> â€fucose biosynthesis and protein fucosylation genes in Arabidopsis immunity. New Phytologist, 2019, 222, 981-994.	3.5	34
40	Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by <i>Colletotrichum acutatum</i> . Molecular Plant Pathology, 2011, 12, 463-477.	2.0	33
41	<i>Ta<scp>ADF</scp>4</i> , an actinâ€depolymerizing factor from wheat, is required for resistance to the stripe rust pathogen <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Plant Journal, 2017, 89, 1210-1224.	2.8	33
42	ArabidopsisÂcalcium-dependent protein kinase 3 regulates actin cytoskeleton organization and immunity. Nature Communications, 2020, 11, 6234.	5.8	29
43	<i>Fusarium virguliforme</i> Transcriptional Plasticity Is Revealed by Host Colonization of Maize versus Soybean. Plant Cell, 2020, 32, 336-351.	3.1	28
44	Molecular and Biochemical Basis for Stress-Induced Accumulation of Free and Bound <i>p</i> -Coumaraldehyde in Cucumber Â. Plant Physiology, 2011, 157, 1056-1066.	2.3	23
45	The Plant Host Pathogen Interface: Cell Wall and Membrane Dynamics of Pathogen-Induced Responses. Annals of the New York Academy of Sciences, 2007, 1113, 123-134.	1.8	22
46	Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0159291.	1.1	22
47	Alternative Splicing in the Obligate Biotrophic Oomycete Pathogen <i>Pseudoperonospora cubensis</i> . Molecular Plant-Microbe Interactions, 2015, 28, 298-309.	1.4	19
48	Plant pathogenic oomycetes: counterbalancing resistance, susceptibility and adaptation. Canadian Journal of Plant Pathology, 2016, 38, 31-40.	0.8	19
49	The tomato <scp>Arp2/3</scp> complex is required for resistance to the powdery mildew fungus <scp><i>Oidium neolycopersici</i></scp> . Plant, Cell and Environment, 2019, 42, 2664-2680.	2.8	19
50	The elicitor-responsive gene for a GRAS family protein, <i>CIGR2</i> , suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, <i>OsHsf23</i> , Bioscience, Biotechnology and Biochemistry, 2016, 80, 145-151.	0.6	17
51	Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. Journal of Plant Physiology, 2022, 268, 153585.	1.6	12
52	Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus <i>Thecaphora thlaspeos</i> reveal functionally conserved and novel effectors. New Phytologist, 2019, 222, 1474-1492.	3.5	11
53	Actin branches out to link pathogen perception and host gene regulation. Plant Signaling and Behavior, 2013, 8, e23468.	1.2	10
54	Wheat Thioredoxin (<i>TaTrxh1</i>) Associates With RD19-Like Cysteine Protease <itacp1< i=""> to Defend Against Stripe Rust Fungus Through Modulation of Programmed Cell Death. Molecular Plant-Microbe Interactions, 2021, 34, 426-438.</itacp1<>	1.4	10

#	Article	IF	CITATIONS
55	Arabidopsis defense mutant ndr1-1 displays accelerated development and early flowering mediated by the hormone gibberellic acid. Plant Science, 2019, 285, 200-213.	1.7	9
56	Inhibition of a Hevea brasiliensis protease by a Kazal-like serine protease inhibitor from Phytophthora palmivora. Physiological and Molecular Plant Pathology, 2009, 74, 27-33.	1.3	8
57	Quantitative Evaluation of Plant Actin Cytoskeletal Organization During Immune Signaling. Methods in Molecular Biology, 2017, 1578, 207-221.	0.4	8
58	Overexpression of NDR1 leads to pathogen resistance at elevated temperatures. New Phytologist, 2022, 235, 1146-1162.	3 . 5	8
59	A genomics perspective on cucurbit-oomycete interactions. Plant Biotechnology, 2013, 30, 265-271.	0.5	7
60	Battling Immune Kinases in Plants. Cell Host and Microbe, 2010, 7, 259-261.	5.1	6
61	Contrasting transcriptional responses to <i>Fusarium virguliforme</i> colonization in symptomatic and asymptomatic hosts. Plant Cell, 2021, 33, 224-247.	3.1	6
62	The small GTP-binding protein TaRop10 interacts with TaTrxh9 and functions as a negative regulator of wheat resistance against the stripe rust. Plant Science, 2021, 309, 110937.	1.7	5
63	Domain switching and host recognition. Molecular Microbiology, 2006, 61, 1091-1093.	1.2	2
64	TaARPC5 is required for wheat defense signaling in response to infection by the stripe rust fungus. Crop Journal, 2021, , .	2.3	1