List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7123234/publications.pdf Version: 2024-02-01

Ιταρίι Οςακά

#	Article	IF	CITATIONS
1	Solution Processable Pentafluorophenyl Endâ€Capped Dithienothiophene Organic Semiconductors for Holeâ€Transporting Organic Field Effect Transistors. Advanced Electronic Materials, 2022, 8, 2100648.	2.6	7
2	Naphthobisthiadiazole-Based π-Conjugated Polymers for Nonfullerene Solar Cells: Suppressing Intermolecular Interaction Improves Photovoltaic Performance. ACS Applied Materials & Interfaces, 2022, 14, 14400-14409.	4.0	9
3	Synergetic Effect on Enhanced Photovoltaic Performance of Spray-Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment. ACS Applied Energy Materials, 2022, 5, 4149-4158.	2.5	10
4	Tunable Photoelectric Properties of nâ€Type Semiconducting Polymer:Small Molecule Blends for Red Light Sensing Phototransistors. Advanced Optical Materials, 2022, 10, .	3.6	5
5	Naphthobispyrazine Bisimide: A Strong Acceptor Unit for Conjugated Polymers Enabling Highly Coplanar Backbone, Short π–π Stacking, and High Electron Transport. Chemistry of Materials, 2022, 34, 2717-2729.	3.2	15
6	Stability improvement mechanism due to less charge accumulation in ternary polymer solar cells. Npj Flexible Electronics, 2022, 6, .	5.1	12
7	Ester-functionalized quinoxaline-based polymers for application in organic photovoltaics. Materials Chemistry and Physics, 2022, 287, 126225.	2.0	2
8	Multiâ€Channel Pumped Ultrasonic Sprayâ€Coating for Highâ€Throughput and Scalable Mixed Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001509.	1.9	13
9	Ï€-Conjugated Polymers Incorporating Naphthalene-Based Nitrogen-Containing Heteroaromatics for Organic Photovoltaics. , 2021, , 541-559.		1
10	Visible light-driven Giese reaction with alkyl tosylates catalysed by nucleophilic cobalt. RSC Advances, 2021, 11, 3539-3546.	1.7	15
11	Bithiazole Dicarboxylate Ester: An Easily Accessible Electron-Deficient Building Unit for π-Conjugated Polymers Enabling Electron Transport. Macromolecules, 2021, 54, 3489-3497.	2.2	9
12	N-type Semiconducting Polymers Based on Dicyano Naphthobisthiadiazole: High Electron Mobility with Unfavorable Backbone Twist. Chemistry of Materials, 2021, 33, 2218-2228.	3.2	16
13	Ultrasonic Sprayâ€Coatings: Multiâ€Channel Pumped Ultrasonic Sprayâ€Coating for Highâ€Throughput and Scalable Mixed Halide Perovskite Solar Cells (Adv. Mater. Interfaces 5/2021). Advanced Materials Interfaces, 2021, 8, 2170023.	1.9	1
14	Spray deposition of NiOx hole transport layer and perovskite photoabsorber in fabrication of photovoltaic mini-module. Journal of Power Sources, 2021, 491, 229586.	4.0	16
15	Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes. Nature Communications, 2021, 12, 2234.	5.8	121
16	One-Step Spray-Coated All-Inorganic CsPbI ₂ Br Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5466-5474.	2.5	16
17	Development of ï€-Conjugated Materials for Efficient Organic Solar Cells. , 2021, , .		0
18	Molecular Understanding of How the Interfacial Structure Impacts the Open-Circuit Voltage of Highly Crystalline Polymer Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 34357-34366.	4.0	2

#	Article	IF	CITATIONS
19	Effect of Ester Side Chains on Photovoltaic Performance in Thiophene-Thiazolothiazole Copolymers. Bulletin of the Chemical Society of Japan, 2021, 94, 2019-2027.	2.0	6
20	Contrasting Effect of Sideâ€Chain Placement on Photovoltaic Performance of Binary and Ternary Blend Organic Solar Cells in Benzodithiopheneâ€Thiazolothiazole Polymers. ChemSusChem, 2021, 14, 5032-5041.	3.6	9
21	Donor–Acceptor Polymers Containing 4,8-Dithienylbenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene via Highly Selective Direct Arylation Polymerization. ACS Applied Polymer Materials, 2021, 3, 830-836.	2.0	17
22	Extended π-Electron Delocalization in Quinoid-Based Conjugated Polymers Boosts Intrachain Charge Carrier Transport. Chemistry of Materials, 2021, 33, 8183-8193.	3.2	17
23	Polymer Solar Cells: Development of π-Conjugated Polymers with Controlled Energetics and Structural Orders. , 2021, , 89-121.		1
24	Analyses of Charge Accumulation of PTzBT Ternary Polymer Solar Cells Using ESR Spectroscopy. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 351-356.	0.1	3
25	Pronounced Backbone Coplanarization by π-Extension in a Sterically Hindered Conjugated Polymer System Leads to Higher Photovoltaic Performance in Non-Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 56420-56429.	4.0	11
26	Direct Suzuki–Miyaura Coupling with Naphthalene-1,8-diaminato (dan)-Substituted Organoborons. ACS Catalysis, 2020, 10, 346-351.	5.5	47
27	Impact of Noncovalent Sulfur–Fluorine Interaction Position on Properties, Structures, and Photovoltaic Performance in Naphthobisthiadiazoleâ€Based Semiconducting Polymers. Advanced Energy Materials, 2020, 10, 1903278.	10.2	39
28	Reductive amidation of alkyl tosylates with isocyanates by a Ni/Co-dual catalytic system. Chemical Communications, 2020, 56, 1247-1250.	2.2	11
29	Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Synthesis of Donor–Acceptor Polymers Containing Unsubstituted Bithiophene Units. Macromolecules, 2020, 53, 158-164.	2.2	19
30	Controlled steric selectivity in molecular doping towards closest-packed supramolecular conductors. Communications Materials, 2020, 1, .	2.9	11
31	Significantly Sensitized Ternary Blend Polymer Solar Cells with a Very Small Content of the Narrow-Band Gap Third Component That Utilizes Optical Interference. Macromolecules, 2020, 53, 10623-10635.	2.2	17
32	Ï€-Conjugated polymers and molecules enabling small photon energy loss simultaneously with high efficiency in organic photovoltaics. Journal of Materials Chemistry A, 2020, 8, 20213-20237.	5.2	34
33	Sequential Ultrasonic Sprayâ€Coating Planar Three Layers for 1 cm ² Active Area Inverted Perovskite Solar Cells. Energy Technology, 2020, 8, 2000216.	1.8	10
34	Effect of Spacer Length in Naphthobispyrazine-Based π-Conjugated Polymers on Properties, Thin Film Structures, and Photovoltaic Performances. Bulletin of the Chemical Society of Japan, 2020, 93, 949-957.	2.0	0
35	Small-bandgap quinoid-based ï€-conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 14262-14288.	2.7	55
36	Dithiazolylthienothiophene Bisimide-Based π-Conjugated Polymers: Improved Synthesis and Application to Organic Photovoltaics as P-Type Semiconductor. Bulletin of the Chemical Society of Japan, 2020, 93, 561-567.	2.0	4

#	Article	IF	CITATIONS
37	Semiconducting small molecule/polymer blends for organic transistors. Polymer, 2020, 191, 122208.	1.8	31
38	Direct Evidence of Less Charge Accumulation in Highly Durable Polymer Solar Cells Using Operando Electron Spin Resonance Spectroscopy. ACS Applied Energy Materials, 2020, 3, 2028-2036.	2.5	11
39	Analyses of PTzNTz Polymer Solar Cells Using ESR Spectroscopy. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 97-102.	0.1	6
40	One-pot Sequential Fluorostannylation–Arylstannylation of Arynes. Chemistry Letters, 2019, 48, 1032-1034.	0.7	11
41	Ultrasonic Spray-Coated Mixed Cation Perovskite Films and Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 14217-14224.	3.2	32
42	Synthesis and Deformable Hierarchical Nanostructure of Intrinsically Stretchable ABA Triblock Copolymer Composed of Poly(3-hexylthiophene) and Polyisobutylene Segments. ACS Applied Polymer Materials, 2019, 1, 315-320.	2.0	29
43	Nickel/Cobalt-Catalyzed C(sp ³)–C(sp ³) Cross-Coupling of Alkyl Halides with Alkyl Tosylates. ACS Catalysis, 2019, 9, 9285-9291.	5.5	62
44	Anthranilamide (aam)-substituted arylboranes in direct carbon–carbon bond-forming reactions. Chemical Communications, 2019, 55, 2624-2627.	2.2	25
45	Dithiazolylthienothiophene Bisimide: A Novel Electron-Deficient Building Unit for N-Type Semiconducting Polymers. ACS Applied Materials & Interfaces, 2019, 11, 23410-23416.	4.0	28
46	Copper-catalyzed arylstannylation of arynes in a sequence. Chemical Communications, 2019, 55, 6503-6506.	2.2	17
47	Ester-Functionalized Naphthobispyrazine as an Acceptor Building Unit for Semiconducting Polymers: Synthesis, Properties, and Photovoltaic Performance. Macromolecules, 2019, 52, 3909-3917.	2.2	9
48	Understanding Comparable Charge Transport Between Edge-on and Face-on Polymers in a Thiazolothiazole Polymer System. ACS Applied Polymer Materials, 2019, 1, 1257-1262.	2.0	18
49	Ni/Co-Catalyzed Homo-Coupling of Alkyl Tosylates. Molecules, 2019, 24, 1458.	1.7	13
50	Copperâ€Catalyzed B(dan)â€Installing Allylic Borylation of Allylic Phosphates. Advanced Synthesis and Catalysis, 2019, 361, 2286-2290.	2.1	17
51	High Operation Stability of Ultraflexible Organic Solar Cells with Ultravioletâ€Filtering Substrates. Advanced Materials, 2019, 31, e1808033.	11.1	44
52	An anthranilamide-substituted borane [H–B(aam)]: its stability and application to iridium-catalyzed stereoselective hydroboration of alkynes. Chemical Communications, 2019, 55, 5420-5422.	2.2	22
53	A Thiazolothiazole-Based Semiconducting Polymer with Well-Balanced Hole and Electron Mobilities. Applied Sciences (Switzerland), 2019, 9, 451.	1.3	2
54	Durable Ultraflexible Organic Photovoltaics with Novel Metalâ€Oxideâ€Free Cathode. Advanced Functional Materials, 2019, 29, 1808378.	7.8	34

#	Article	IF	CITATIONS
55	Nickel-Catalyzed Reductive Bis-Allylation of Alkynes. Organic Letters, 2018, 20, 1457-1460.	2.4	16
56	Impact of side chain placement on thermal stability of solar cells in thiophene–thiazolothiazole polymers. Journal of Materials Chemistry C, 2018, 6, 3668-3674.	2.7	15
57	Selective Synthesis and Properties of Electronâ€Deficient Hybrid Naphthaleneâ€Based π onjugated Systems. Chemistry - A European Journal, 2018, 24, 19228-19235.	1.7	9
58	Scalable Ultrasonic Spray-Processing Technique for Manufacturing Large-Area CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38042-38050.	4.0	43
59	Correlation between Distribution of Polymer Orientation and Cell Structure in Organic Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 32420-32425.	4.0	16
60	Three-component coupling of aryl iodides, allenes, and aldehydes catalyzed by a Co/Cr-hybrid catalyst. Beilstein Journal of Organic Chemistry, 2018, 14, 1413-1420.	1.3	4
61	Nickel and Nucleophilic Cobalt-Catalyzed Trideuteriomethylation of Aryl Halides Using Trideuteriomethyl <i>p</i> -Toluenesulfonate. Organic Letters, 2018, 20, 4375-4378.	2.4	28
62	Transparent Electrodes: Reverse-Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for High-Performance Organic Photovoltaics (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870190.	11.1	2
63	Anthranilamide (aam)-substituted diboron: palladium-catalyzed selective B(aam) transfer. Chemical Communications, 2018, 54, 9290-9293.	2.2	21
64	Bimolecular recombination and fill factor in crystalline polymer solar cells. Japanese Journal of Applied Physics, 2018, 57, 08RE01.	0.8	7
65	Reverseâ€Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1707526.	11.1	59
66	Copper-catalyzed Borylation of Bromoaryl Triflates with Diborons: Chemoselective Replacement of an Ar–Br Bond. Chemistry Letters, 2018, 47, 957-959.	0.7	12
67	(Invited) Reducing the Photon Energy Loss in Polymer Solar Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
68	Copper-Catalyzed B(dan)-Installing Carboboration of Alkenes. Organic Letters, 2017, 19, 830-833.	2.4	68
69	Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics. Advanced Materials, 2017, 29, 1605218.	11.1	91
70	Highly nucleophilic vitamin B ₁₂ -assisted nickel-catalysed reductive coupling of aryl halides and non-activated alkyl tosylates. Chemical Communications, 2017, 53, 6401-6404.	2.2	47
71	Cumulative gain in organic solar cells by using multiple optical nanopatterns. Journal of Materials Chemistry A, 2017, 5, 10347-10354.	5.2	24
72	Aryne–Imine–Aryne Coupling Reaction via [4+2] Cycloaddition between Azaâ€ <i>o</i> â€Quinone Methides and Arynes. Asian Journal of Organic Chemistry, 2017, 6, 973-976.	1.3	20

#	Article	IF	CITATIONS
73	Naphthobispyrazine as an Electron-deficient Building Unit for π-Conjugated Polymers: Efficient Synthesis and Polymer Properties. Chemistry Letters, 2017, 46, 1193-1196.	0.7	9
74	Copper-Catalyzed Borylstannylation of Alkynes with Tin Fluorides. Organometallics, 2017, 36, 1345-1351.	1.1	21
75	Copper-catalyzed direct borylation of alkyl, alkenyl and aryl halides with B(dan). Organic Chemistry Frontiers, 2017, 4, 1215-1219.	2.3	46
76	Ligandâ€Free Copperâ€Catalyzed Cyano―and Alkynylstannylation of Arynes. ChemistrySelect, 2017, 2, 3212-3215.	0.7	13
77	Dithienyl Acenedithiophenediones as New Ï€â€Extended Quinoidal Cores: Synthesis and Properties. Chemistry - A European Journal, 2017, 23, 4579-4589.	1.7	18
78	B(MIDA)-Containing Diborons. ACS Omega, 2017, 2, 5911-5916.	1.6	8
79	Exploring Alkyl Chains in Benzobisthiazole-Naphthobisthiadiazole Polymers: Impact on Solar-Cell Performance, Crystalline Structures, and Optoelectronics. ACS Applied Materials & Interfaces, 2017, 9, 37702-37711.	4.0	25
80	Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nature Energy, 2017, 2, 780-785.	19.8	369
81	2-V operated flexible vertical organic transistor with good air stability and bias stress reliability. Organic Electronics, 2017, 50, 325-330.	1.4	16
82	Reduced exchange narrowing caused by gate-induced charge carriers in high-mobility donor–acceptor copolymers. Physical Review B, 2017, 95, .	1.1	9
83	Control of Major Carriers in an Ambipolar Polymer Semiconductor by Selfâ€Assembled Monolayers. Advanced Materials, 2017, 29, 1602893.	11.1	66
84	Effects of branching position of alkyl side chains on ordering structure and charge transport property in thienothiophenedione- and quinacridone-based semiconducting polymers. Polymer Journal, 2017, 49, 169-176.	1.3	23
85	Synthesis and Characterization of an Alkoxythiazole-thiazolothiazole Semiconducting Polymer for Organic Solar Cells. Electrochemistry, 2017, 85, 266-271.	0.6	2
86	Time-Resolved EPR Study on Photoinduced Charge-Transfer Trap State in Thiophene-Thiazolothiazole Copolymer Film. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 551-555.	0.1	2
87	Molecular ordering of spin-coated and electrosprayed P3HT:PCBM thin films and their applications to photovoltaic cell. Thin Solid Films, 2016, 612, 373-380.	0.8	24
88	Analyses of Thiophene-Based Donor–Acceptor Semiconducting Polymers toward Designing Optical and Conductive Properties: A Theoretical Perspective. Journal of Physical Chemistry C, 2016, 120, 8305-8314.	1.5	17
89	Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids. Journal of the American Chemical Society, 2016, 138, 7725-7732.	6.6	111
90	Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers. Journal of the American Chemical Society, 2016, 138, 10265-10275.	6.6	319

#	Article	IF	CITATIONS
91	Dithienylthienothiophenebisimide, a Versatile Electronâ€Deficient Unit for Semiconducting Polymers. Advanced Materials, 2016, 28, 6921-6925.	11.1	83
92	Soluble Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene Derivatives for Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2016, 8, 3810-3824.	4.0	43
93	Design and elaboration of organic molecules for high field-effect-mobility semiconductors. Synthetic Metals, 2016, 217, 68-78.	2.1	65
94	Naphthodithiophene Diimide-Based Copolymers: Ambipolar Semiconductors in Field-Effect Transistors and Electron Acceptors with Near-Infrared Response in Polymer Blend Solar Cells. Macromolecules, 2016, 49, 1752-1760.	2.2	73
95	Amide-bridged terphenyl and dithienylbenzene units for semiconducting polymers. RSC Advances, 2016, 6, 16437-16447.	1.7	4
96	Highly Efficient and Stable Solar Cells Based on Thiazolothiazole and Naphthobisthiadiazole Copolymers. Scientific Reports, 2015, 5, 14202.	1.6	53
97	Study of Photoelectric Conversion in Benzotrithiophene-Based Conjugated Semiconducting Polymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 605-610.	0.1	6
98	Angularâ€5haped 4,9â€Dialkyl α―and βâ€Naphthodithiopheneâ€Based Donor–Acceptor Copolymers: Investig of Isomeric Structural Effects on Molecular Properties and Performance of Fieldâ€Effect Transistors and Photovoltaics. Advanced Functional Materials, 2015, 25, 6131-6143.	gation 7.8	49
99	Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9, 403-408.	15.6	769
100	High-efficiency polymer solar cells with small photon energy loss. Nature Communications, 2015, 6, 10085.	5.8	358
101	Backbone orientation in semiconducting polymers. Polymer, 2015, 59, A1-A15.	1.8	156
102	Naphthodithiophene Diimide (NDTI)-Based Semiconducting Copolymers: From Ambipolar to Unipolar n-Type Polymers. Macromolecules, 2015, 48, 576-584.	2.2	81
103	Thermally, Operationally, and Environmentally Stable Organic Thin-Film Transistors Based on Bis[1]benzothieno[2,3- <i>d</i> :2′,3′- <i>d</i> ′]naphtho[2,3- <i>b</i> :6,7- <i>b</i> à€²]dithiophene Deriva Effective Synthesis, Electronic Structures, and Structureâ€"Property Relationship. Chemistry of Materials, 2015, 27, 5049-5057.	tives: 3.2	58
104	On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics. Physical Chemistry Chemical Physics, 2015, 17, 17778-17784.	1.3	35
105	Thienothiopheneâ€2,5â€Dioneâ€Based Donor–Acceptor Polymers: Improved Synthesis and Influence of the Donor Units on Ambipolar Charge Transport Properties. Advanced Electronic Materials, 2015, 1, 1500039.	2.6	32
106	Naphthodithiophenediimide (NDTI)-based triads for high-performance air-stable, solution-processed ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2015, 3, 4244-4249.	2.7	36
107	α-Modified Naphthodithiophene Diimides—Molecular Design Strategy for Air-Stable n-Channel Organic Semiconductors. Chemistry of Materials, 2015, 27, 6418-6425.	3.2	60
108	Effect of Chalcogen Atom on the Properties of Naphthobischalcogenadiazole-Based π-Conjugated Polymers. Chemistry of Materials, 2015, 27, 6558-6570.	3.2	78

#	Article	IF	CITATIONS
109	Naphthodithiophenes: Emerging Building Blocks for Organic Electronics. Chemical Record, 2015, 15, 175-188.	2.9	20
110	Semiconducting polymers based on electron-deficient ï€-building units. Polymer Journal, 2015, 47, 18-25.	1.3	32
111	Dibenzo[a,e]pentalene-embedded dicyanomethylene-substituted thienoquinoidals for n-channel organic semiconductors: synthesis, properties, and device characteristics. Journal of Materials Chemistry C, 2015, 3, 283-290.	2.7	32
112	Achieving high efficiency and stability in inverted organic solar cells fabricated by laminated gold leaf as top electrodes. Applied Physics Express, 2014, 7, 111602.	1.1	7
113	5, 10-linked naphthodithiophenes as the building block for semiconducting polymers. Science and Technology of Advanced Materials, 2014, 15, 024201.	2.8	5
114	Effect of Oxygenâ€Containing Functional Side Chains on the Electronic Properties and Photovoltaic Performances in a Thiophene–Thiazolothiazole Copolymer System. Heteroatom Chemistry, 2014, 25, 556-564.	0.4	6
115	Crystalline conjugated polymers for organic electronics. IOP Conference Series: Materials Science and Engineering, 2014, 54, 012016.	0.3	1
116	Enhanced Photovoltaic Performance of Amorphous Copolymers Based on Dithienosilole and Dioxocycloalkene-annelated Thiophene. Chemistry of Materials, 2014, 26, 6971-6978.	3.2	32
117	π-Building Blocks for Organic Electronics: Revaluation of "Inductive―and "Resonance―Effects of Ï€-Electron Deficient Units. Chemistry of Materials, 2014, 26, 587-593.	3.2	211
118	Novel dibenzo[a,e]pentalene-based conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 64-70.	2.7	63
119	Onâ€Top Ï€â€&tacking of Quasiplanar Molecules in Holeâ€Transporting Materials: Inducing Anisotropic Carrier Mobility in Amorphous Films. Angewandte Chemie - International Edition, 2014, 53, 5800-5804.	7.2	87
120	Thiophene–Thiazolothiazole Copolymers: Significant Impact of Side Chain Composition on Backbone Orientation and Solar Cell Performances. Advanced Materials, 2014, 26, 331-338.	11.1	275
121	Quinoidal Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophenes for Solution-Processed n-Channel Organic Field-Effect Transistors. Organic Letters, 2014, 16, 1334-1337.	2.4	43
122	Contrasting Effect of Alkylation on the Ordering Structure in Isomeric Naphthodithiophene-Based Polymers. Macromolecules, 2014, 47, 3502-3510.	2.2	36
123	Dithiophene-Fused Tetracyanonaphthoquinodimethanes (DT-TNAPs): Synthesis and Characterization of Ĩ€-Extended Quinoidal Compounds for n-Channel Organic Semiconductor. Organic Letters, 2014, 16, 240-243.	2.4	24
124	Small band gap polymers incorporating a strong acceptor, thieno[3,2-b]thiophene-2,5-dione, with p-channel and ambipolar charge transport characteristics. Journal of Materials Chemistry C, 2014, 2, 2307-2312.	2.7	27
125	Highly Oriented Polymer Semiconductor Films Compressed at the Surface of Ionic Liquids for Highâ€Performance Polymeric Organic Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6430-6435.	11.1	69
126	All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer. ACS Macro Letters, 2014, 3, 872-875.	2.3	110

#	Article	IF	CITATIONS
127	Organic Semiconductors Based on [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene Substructure. Accounts of Chemical Research, 2014, 47, 1493-1502.	7.6	440
128	Naphthodithiophenediimide (NDTI): Synthesis, Structure, and Applications. Journal of the American Chemical Society, 2013, 135, 11445-11448.	6.6	172
129	Diphenyl Derivatives of Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene: Organic Semiconductors for Thermally Stable Thin-Film Transistors. ACS Applied Materials & Interfaces, 2013, 5, 2331-2336.	4.0	80
130	Consecutive Thiophene-Annulation Approach to π-Extended Thienoacene-Based Organic Semiconductors with [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene (BTBT) Substructure. Journal of the American Chemical Society, 2013, 135, 13900-13913.	6.6	256
131	Flexible air-stable three-dimensional polymer field-effect transistors with high output current density. Organic Electronics, 2013, 14, 2908-2915.	1.4	16
132	Naphthodithiophenes as building units for small molecules to polymers; a case study for in-depth understanding of structure–property relationships in organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 1297-1304.	2.7	84
133	Thienannulation: Efficient Synthesis of ï€â€Extended Thienoacenes Applicable to Organic Semiconductors. European Journal of Organic Chemistry, 2013, 2013, 217-227.	1.2	69
134	5,10-Diborylated naphtho[1,2-c:5,6-câ€2]bis[1,2,5]thiadiazole: a ready-to-use precursor for the synthesis of high-performance semiconducting polymers. Polymer Chemistry, 2013, 4, 5224.	1.9	18
135	Naphthodithiophene–Naphthobisthiadiazole Copolymers for Solar Cells: Alkylation Drives the Polymer Backbone Flat and Promotes Efficiency. Journal of the American Chemical Society, 2013, 135, 8834-8837.	6.6	301
136	Quinacridone-Diketopyrrolopyrrole-Based Polymers for Organic Field-Effect Transistors. Materials, 2013, 6, 1061-1071.	1.3	11
137	Two Isomeric Didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophenes: Impact of Alkylation Positions on Packing Structures and Organic Field Effect Transistor Characteristics. Japanese Journal of Applied Physics, 2012, 51, 11PD04.	0.8	5
138	Facile Syntheses of Anthra[2,3-b]chalcogenophenes. Synthesis, 2012, 44, 2102-2106.	1.2	11
139	Isomerically Pure Anthra[2,3- <i>b</i> :6,7- <i>b</i> ′]-difuran (<i>anti</i> -ADF), -dithiophene (<i>anti</i> -ADT), and -diselenophene (<i>anti</i> -ADS): Selective Synthesis, Electronic Structures, and Application to Organic Field-Effect Transistors. Journal of Organic Chemistry, 2012, 77, 8099-8111.	1.7	111
140	[2,2′]Bi[naphtho[2,3-b]furanyl]: a versatile organic semiconductor with a furan–furan junction. Chemical Communications, 2012, 48, 5892.	2.2	69
141	Orthogonally Functionalized Naphthodithiophenes: Selective Protection and Borylation. Organic Letters, 2012, 14, 4718-4721.	2.4	42
142	High-power three-dimensional polymer FETs. Current Applied Physics, 2012, 12, S92-S95.	1.1	3
143	Angular-shaped naphthodifurans, naphtho[1,2-b;5,6-bâ€2]- and naphtho[2,1-b;6,5-bâ€2]-difuran: are they isoelectronic with chrysene?. Chemical Communications, 2012, 48, 5671.	2.2	23
144	Naphthodithiophene-Based Donor–Acceptor Polymers: Versatile Semiconductors for OFETs and OPVs. ACS Macro Letters, 2012, 1, 437-440.	2.3	128

#	Article	IF	CITATIONS
145	Organic photovoltaics based on 5-hexylthiophene-fused porphyrazines. Organic Electronics, 2012, 13, 1975-1980.	1.4	10
146	Largely π-Extended Thienoacenes with Internal Thieno[3,2- <i>b</i>]thiophene Substructures: Synthesis, Characterization, and Organic Field-Effect Transistor Applications. Organic Letters, 2012, 14, 4914-4917.	2.4	50
147	Quinacridone-Based Semiconducting Polymers: Implication of Electronic Structure and Orientational Order for Charge Transport Property. Chemistry of Materials, 2012, 24, 1235-1243.	3.2	68
148	Borylation on Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]- and Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dichalcogenophenes: Different Chalcogene Atom Effects on Borylation Reaction Depending on Fused Ring Structure. Organic Letters, 2012, 14, 5448-5451.	2.4	18
149	Helically π-Stacked Thiophene-Based Copolymers with Circularly Polarized Fluorescence: High Dissymmetry Factors Enhanced by Self-Ordering in Chiral Nematic Liquid Crystal Phase. Chemistry of Materials, 2012, 24, 1011-1024.	3.2	157
150	Synthesis, Characterization, and Transistor and Solar Cell Applications of a Naphthobisthiadiazole-Based Semiconducting Polymer. Journal of the American Chemical Society, 2012, 134, 3498-3507.	6.6	323
151	Drastic Change of Molecular Orientation in a Thiazolothiazole Copolymer by Molecularâ€Weight Control and Blending with PC ₆₁ BM Leads to High Efficiencies in Solar Cells. Advanced Materials, 2012, 24, 425-430.	11.1	157
152	Two Isomeric Didecyl-dinaphtho[2,3- <i>b</i> :2',3'- <i>f</i>]thieno[3,2- <i>b</i>]thiophenes: Impact of Alkylation Positions on Packing Structures and Organic Field Effect Transistor Characteristics. Japanese Journal of Applied Physics, 2012, 51, 11PD04.	0.8	11
153	Synthesis and Characterization of Benzo[1,2- <i>b</i> :3,4- <i>b′</i> :5,6- <i>b′′</i>]trithiophene (BTT) Oligomers. Journal of Organic Chemistry, 2011, 76, 4061-4070.	1.7	52
154	Impact of Isomeric Structures on Transistor Performances in Naphthodithiophene Semiconducting Polymers. Journal of the American Chemical Society, 2011, 133, 6852-6860.	6.6	205
155	Quinoidal Oligothiophenes with (Acyl)cyanomethylene Termini: Synthesis, Characterization, Properties, and Solution Processed n-Channel Organic Field-Effect Transistors. Chemistry of Materials, 2011, 23, 795-804.	3.2	48
156	General Synthesis of Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene (DNTT) Derivatives. Organic Letters, 2011, 13, 3430-3433.	2.4	94
157	Linear- and Angular-Shaped Naphthodithiophenes: Selective Synthesis, Properties, and Application to Organic Field-Effect Transistors. Journal of the American Chemical Society, 2011, 133, 5024-5035.	6.6	276
158	Dianthra[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene (DATT): Synthesis, Characterization, and FET Characteristics of New I€-Extended Heteroarene with Eight Fused Aromatic Rings. Journal of the American Chemical Society, 2011, 133, 8732-8739.	6.6	199
159	Donor-Acceptor Semiconducting Polymers Based on Thiazole-Containing Fused-Rings for Organic Field-Effect Transistors. Kobunshi Ronbunshu, 2011, 68, 1-10.	0.2	0
160	Air-Stable and High-Mobility Organic Semiconductors Based on Heteroarenes for Field-Effect Transistors. Heterocycles, 2011, 83, 1187.	0.4	34
161	Mixed selenium-sulfur fused ring systems as building blocks for novel polymers used in field effect transistors. Journal of Materials Chemistry, 2011, 21, 1551-1561.	6.7	40
162	Thienoaceneâ€Based Organic Semiconductors. Advanced Materials, 2011, 23, 4347-4370.	11.1	865

#	Article	IF	CITATIONS
163	Insight into how molecular structures of thiophene-based conjugated polymers affect crystallization behaviors. Polymer, 2011, 52, 2302-2309.	1.8	58
164	One-step synthesis of [1]benzothieno[3,2-b][1]benzothiophene from o-chlorobenzaldehyde. Tetrahedron Letters, 2011, 52, 285-288.	0.7	54
165	Benzobisthiazoleâ€Based Semiconducting Copolymers Showing Excellent Environmental Stability in Highâ€Humidity Air. Advanced Materials, 2010, 22, 4993-4997.	11.1	74
166	Thieno[3,4-c]pyrrole-incorporated quinoidal terthiophene with dicyanomethylene termini: synthesis, characterization, and redox properties. Tetrahedron Letters, 2010, 51, 4375-4377.	0.7	1
167	Facile synthesis of [1]benzothieno[3,2-b]benzothiophene from o-dihalostilbenes. Tetrahedron Letters, 2010, 51, 5277-5280.	0.7	25
168	High-Mobility Semiconducting Naphthodithiophene Copolymers. Journal of the American Chemical Society, 2010, 132, 5000-5001.	6.6	184
169	Highly Stable Semiconducting Polymers Based on Thiazolothiazole. Chemistry of Materials, 2010, 22, 4191-4196.	3.2	108
170	Transistor Paint: Environmentally Stable <i>N</i> â€alkyldithienopyrrole and Bithiazoleâ€Based Copolymer Thinâ€Film Transistors Show Reproducible High Mobilities without Annealing. Advanced Functional Materials, 2009, 19, 3427-3434.	7.8	83
171	Grignard Metathesis Method (GRIM): Toward a Universal Method for the Synthesis of Conjugated Polymers. Macromolecules, 2009, 42, 30-32.	2.2	163
172	High-Lamellar Ordering and Amorphous-Like Ï€-Network in Short-Chain Thiazolothiazoleâ^'Thiophene Copolymers Lead to High Mobilities. Journal of the American Chemical Society, 2009, 131, 2521-2529.	6.6	264
173	Phosphonic acid self-assembled monolayer and amorphous hafnium oxide hybrid dielectric for high performance polymer thin film transistors on plastic substrates. Applied Physics Letters, 2009, 95, 113305.	1.5	31
174	Advances in Molecular Design and Synthesis of Regioregular Polythiophenes. Accounts of Chemical Research, 2008, 41, 1202-1214.	7.6	733
175	Novel Thiopheneâ€Thiazolothiazole Copolymers for Organic Fieldâ€Effect Transistors. Advanced Materials, 2007, 19, 4160-4165.	11.1	279
176	Synthesis and properties of chiral thienylene-phenylene copolymers. Synthetic Metals, 2003, 135-136, 93-94.	2.1	22
177	Dichroic fluorescence of liquid crystalline polythiophene and polythienylenevinylene derivatives. Synthetic Metals, 2001, 119, 541-542.	2.1	26
178	Synthesis and Properties of Liquid Crystalline Polythiophene and Polythienylenevinylene Derivatives. Molecular Crystals and Liquid Crystals, 2001, 365, 339-346.	0.3	8
179	A family of liquid crystalline polyarylenevinylenes. Synthetic Metals, 1999, 102, 1287-1288.	2.1	27
180	Synthesis and properties of liquid crystaline polythiophene derivatives. Synthetic Metals, 1999, 102, 1437-1438.	2.1	27

#	Article	IF	CITATIONS
181	Regioregular and Regiosymmetric Polythiophenes. , 0, , 59-90.		15
182	Reducing the Photon Energy Loss in Polymer Solar Cells. , 0, , .		0
183	Energy of Charge Separation States in High-Efficiency Polymer Solar Cell with Low Energy Loss. , 0, , .		0