Junhao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7122879/publications.pdf

Version: 2024-02-01

159585 138484 83 3,588 30 58 citations g-index h-index papers 83 83 83 3337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. Journal of Materials Chemistry A, 2017, 5, 266-274.	10.3	341
2	Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs <i>via</i> large-scale preparation. Journal of Materials Chemistry A, 2018, 6, 6376-6386.	10.3	183
3	Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Applied Surface Science, 2019, 469, 487-494.	6.1	179
4	Ultrasmall SnS ₂ nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10719-10726.	10.3	177
5	Few layered Co(OH) ₂ ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chemistry, 2016, 18, 3066-3074.	9.0	171
6	Systematic Study of Effect on Enhancing Specific Capacity and Electrochemical Behaviors of Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1701330.	19.5	154
7	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Composites Science and Technology, 2018, 154, 136-144.	7.8	146
8	Unusual Formation of CoO@C "Dandelions―Derived from 2D Kagóme MOLs for Efficient Lithium Storage. Advanced Energy Materials, 2018, 8, 1703242.	19.5	122
9	High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni–Co layered double hydroxide. Journal of Alloys and Compounds, 2020, 837, 155529.	5 . 5	110
10	Ultrafine nickel nanocatalyst-engineering of an organic layered double hydroxide towards a super-efficient fire-safe epoxy resin <i>via</i> interfacial catalysis. Journal of Materials Chemistry A, 2018, 6, 8488-8498.	10.3	101
11	Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Applied Clay Science, 2017, 146, 230-237.	5.2	98
12	High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Research, 2020, 13, 2862-2868.	10.4	94
13	Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Composites Science and Technology, 2019, 182, 107748.	7.8	88
14	Biomorphic CoNC/CoO <i>_x</i> Composite Derived from Natural Chloroplasts as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2019, 15, e1804855.	10.0	72
15	Controllable Solid-Phase Fabrication of an Fe ₂ /Fe–N–C Electrocatalyst toward Optimizing the Oxygen Reduction Reaction in Zinc–Air Batteries. Nano Letters, 2022, 22, 4879-4887.	9.1	72
16	Facile <i>in situ</i> fabrication of biomorphic Co ₂ P-Co ₃ O ₄ /rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale, 2020, 12, 4374-4382.	5.6	68
17	Two-dimensional flower-like cobalt-porphyrin MOF/rGO composite anodes for high-performance Li-ion batteries. Journal of Alloys and Compounds, 2021, 881, 160531.	5.5	63
18	2D molybdenum nitride nanosheets as anode materials for improved lithium storage. Nanoscale, 2018, 10, 18936-18941.	5.6	61

#	Article	IF	Citations
19	Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Research, 2021, 14, 3598-3607.	10.4	60
20	Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 857, 157554.	5.5	58
21	Ultrathin Ni-Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceramics International, 2017, 43, 14395-14400.	4.8	52
22	Improving the flame-retardant efficiency of layered double hydroxide with disodium phenylphosphate for epoxy resin. Journal of Thermal Analysis and Calorimetry, 2020, 140, 149-156.	3.6	45
23	Zn ₂ GeO ₄ nanorods grown on carbon cloth as high performance flexible lithium-ion battery anodes. RSC Advances, 2017, 7, 51807-51813.	3.6	43
24	Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries. Chemical Communications, 2021, 57, 10580-10583.	4.1	42
25	An altered nanoemulsion assembly strategy for in-situ synthesis of Co2P/NP-C nanospheres as advanced oxygen reduction electrocatalyst for zinc-air batteries. Composites Part B: Engineering, 2022, 231, 109589.	12.0	41
26	Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium–sulfur battery. Electrochimica Acta, 2020, 354, 136648.	5.2	40
27	Fabrication of GeO2 microspheres /hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries. Journal of Solid State Chemistry, 2020, 286, 121303.	2.9	36
28	Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochimica Acta, 2022, 707, 179112.	2.7	36
29	Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 3933-3942.	6.0	34
30	A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries. Nano Research, 2022, 15, 2092-2103.	10.4	33
31	Solution-Processed Sb ₂ Se ₃ on TiO ₂ Thin Films Toward Oxidation-and Moisture-Resistant, Self-Powered Photodetectors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38341-38349.	8.0	32
32	Germanium-based complex derived porous GeO2 nanoparticles for building high performance Li-ion batteries. Ceramics International, 2018, 44, 1127-1133.	4.8	31
33	A Promising Hard Carbonâ^'Soft Carbon Composite Anode with Boosting Sodium Storage Performance. ChemElectroChem, 2020, 7, 4010-4015.	3.4	31
34	Intercalating assembly of NiFe LDH nanosheets/CNTs composite as high-performance electrocatalyst for oxygen evolution reaction. Applied Clay Science, 2022, 216, 106360.	5.2	31
35	Converting Polyethylene Waste into Large Scale One-Dimensional Fe ₃ O ₄ @C Composites by a Facile One-Pot Process. Industrial & Engineering Chemistry Research, 2013, 52, 5708-5712.	3.7	30
36	Recent progress on preparation and applications of layered double hydroxides. Chinese Chemical Letters, 2022, 33, 4428-4436.	9.0	30

#	Article	IF	Citations
37	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2117-2124.	3.6	28
38	Improving Thermal and Flame Retardant Properties of Epoxy Resin with Organic NiFeâ€Layered Double Hydroxideâ€Carbon Nanotubes Hybrids. Chinese Journal of Chemistry, 2017, 35, 1875-1880.	4.9	27
39	Polyphosphazene-wrapped Fe–MOF for improving flame retardancy and smoke suppression of epoxy resins. Journal of Thermal Analysis and Calorimetry, 2021, 144, 51-59.	3.6	25
40	Sustainable processing of waste polypropylene to produce high yield valuable Fe/carbon nanotube nanocomposites. CrystEngComm, 2014, 16, 8832-8840.	2.6	24
41	Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. Journal of Thermal Analysis and Calorimetry, 2014, 117, 693-699.	3.6	24
42	Nitrogen-doped carbon composites derived from 7,7,8,8-tetracyanoquinodimethane-based metal–organic frameworks for supercapacitors and lithium-ion batteries. RSC Advances, 2017, 7, 25182-25190.	3.6	23
43	Ultrafine CoO nanoparticles and Co-N-C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries. Electrochimica Acta, 2021, 394, 139135.	5.2	23
44	Systematic Exploration of the Role of a Modified Layer on the Separator in the Electrochemistry of Lithium–Sulfur Batteries. ACS Applied Materials & Lithium†10, 30306-30313.	8.0	22
45	Effect on thermal and combustion behaviors of montmorillonite intercalation nickel compounds in polypropylene/IFR system. Polymers for Advanced Technologies, 2017, 28, 965-970.	3.2	21
46	Improving flame retardancy of PP/MH/RP composites through synergistic effect of organic CoAl-layered double hydroxide. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1039-1046.	3.6	19
47	Synthesis of carbon-coated Fe3O4 composites with pine-tree-leaf structures from catalytic pyrolysis of polyethylene. CrystEngComm, 2012, 14, 3451.	2.6	18
48	N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances. Journal of Nanoscience and Nanotechnology, 2020, 20, 2728-2735.	0.9	18
49	Submicron Co ₉ S ₈ /CoS/Carbon Spheres Derived from Bacteria for the Electrocatalytic Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 4571-4575.	3.4	17
50	Facile Fabrication of Amorphous Niâ^'P Supported on a 3D Biocarbon Skeleton as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3071-3076.	3.4	17
51	Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. Journal of Thermal Analysis and Calorimetry, 2016, 124, 807-814.	3.6	16
52	Construction of CoS2-N-C sheets anchored on 3D graphene network for lithium storage performances. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	16
53	Boosting flame retardancy of epoxy resin composites through incorporating ultrathin nickel phenylphosphate nanosheets. Journal of Applied Polymer Science, 2021, 138, 50265.	2.6	16
54	Self-assembled synthesis of carbon-coated Fe3O4 composites with firecracker-like structures from catalytic pyrolysis of polyamide. RSC Advances, 2014, 4, 6991.	3.6	15

#	Article	IF	Citations
55	Graphene Encapsulated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2013, 13, 4364-4369.	0.9	14
56	NaCl–H2O-assisted preparation of SrTiO3 nanoparticles by solid state reaction at low temperature. Ceramics International, 2015, 41, 5439-5444.	4.8	14
57	Sulfur–hydrazine hydrate-based chemical synthesis of sulfur@graphene composite for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2018, 5, 785-792.	6.0	14
58	Preparation of CoSnO ₃ /CNTs/S and its Electrochemical Performance as Cathode Material for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2020, 7, 4209-4217.	3.4	14
59	Large-scale controllable preparation and performance of hierarchical nickel microstructures by a seed-mediated solution hydrogen reduction route. Journal of Materials Chemistry A, 2015, 3, 7877-7887.	10.3	13
60	NiAl Layered Double Hydroxide Flowers with Ultrathin Structure Grown on 3D Graphene for Highâ€Performance Supercapacitors. European Journal of Inorganic Chemistry, 2019, 2019, 3719-3723.	2.0	13
61	Polymer-assisted synthesis and applications of hydroxyapatite (HAp) anchored nitrogen-doped 3D graphene foam-based nanostructured ceramic framework. RSC Advances, 2020, 10, 17918-17929.	3.6	12
62	Isovalent bismuth ion-induced growth of highly-disperse Sb $<$ sub $>$ 2 $<$ /sub $>$ 5 $<$ sub $>$ 3 $<$ /sub $>$ nanorods and their composite with $<$ i $>$ p $<$ /i $>$ -CuSCN for self-powered photodetectors. CrystEngComm, 2019, 21, 554-562.	2.6	11
63	Improving the Thermal Stability and Flame Retardancy of PP/IFR Composites by NiAl-Layered Double Hydroxide. Journal of Nanoscience and Nanotechnology, 2018, 18, 3660-3665.	0.9	9
64	Dualâ€Templating Approaches to Soybeans Milkâ€Derived Hierarchically Porous Heteroatomâ€Doped Carbon Materials for Lithiumâ€ion Batteries. ChemistryOpen, 2020, 9, 582-587.	1.9	9
65	Effect of Fe-Montmorillonite on Flammability Behavior in Polypropylene/Magnesium Hydroxide Composites. Journal of Nanoscience and Nanotechnology, 2016, 16, 8287-8293.	0.9	8
66	Thermal Stability and Flame Retardancy of Polypropylene/NiAl Layered Double Hydroxide Nanocomposites. Journal of Nanoscience and Nanotechnology, 2018, 18, 1051-1056.	0.9	8
67	Molten Salt-assisted Magnesiothermic Reduction Synthesis of Spherical Si Hollow Structure as Promising Anode Materials of Lithium Ion Batteries. Chemistry Letters, 2019, 48, 1547-1550.	1.3	8
68	Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery. Frontiers in Energy, 2020, 14, 759-766.	2.3	8
69	Suppressing fire hazard of poly(vinyl alcohol) based on (<scp>NH₄</scp>)(sub>2) with layered structure. Journal of Applied Polymer Science, 2021, 138, 51345.	(< ቌ ርϙ>C<ዩ	su 8 >2
70	Constructing Cu2O@Ni-Al LDH core-shell structure for high performance supercapacitor electrode material. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	7
71	Accelerated formation of strontium silicate by solid-state reaction in NaCl–H2O(ν) system at lower temperature. Applied Surface Science, 2015, 347, 57-63.	6.1	5
72	Effect of Graphene Oxide–Modified Cobalt Nickel Phosphate on Flame Retardancy of Epoxy Resin. Frontiers in Materials, 2020, 7, .	2.4	5

#	Article	IF	CITATIONS
73	Oleic acid-induced, controllable surface oxidation to enhance the photoresponse performance of Sb ₂ Se ₃ nanorods. CrystEngComm, 2020, 22, 6189-6194.	2.6	5
74	Length and composition tunable Sb–Bi–S nanowires for optoelectronic devices prepared via an isostructure-favored solvothermal synthesis. Journal of Alloys and Compounds, 2020, 831, 154886.	5.5	5
75	Hollow N-doped Carbon/Metal Phosphate Structure as Sulfur Host for an Advanced Cathode of Lithium-Sulfur Battery. Chemistry Letters, 2020, 49, 677-680.	1.3	5
76	CoS ₂ Nanoparticles Embedded in Twoâ€Dimensional Sheetâ€Shaped Nâ€Doped Carbon for Sodium Storage. European Journal of Inorganic Chemistry, 2021, 2021, 1536-1541.	2.0	5
77	Fabricating titanium dioxide/N-doped carbon nanofibers as advanced interlayer for improving cycling reversibility of lithium-sulfur batteries. Chinese Journal of Chemical Engineering, 2022, 52, 88-94.	3.5	5
78	Co ₃ O ₄ on Fe, N Doped Bioâ€Carbon Substrate for Electrocatalysis of Oxygen Reduction. European Journal of Inorganic Chemistry, 2020, 2020, 3869-3876.	2.0	4
79	One-step chemical synthesis of MgCNi3 nanoparticles embedded in carbon nanosheets utilizing waste polyethylene as carbon source. Materials Research Express, 2019, 6, 126003.	1.6	3
80	Large Scale Preparation of β aSiO ₃ Nanostructures by Solid‣tate Reaction in NaCl–H ₂ O(v) System at Lower Temperature. Journal of the American Ceramic Society, 2015, 98, 2264-2268.	3.8	1
81	CoSnO ₃ Nanocubes Wrapped by Carbon Nanofibers for Improving Lithiumâ€Sulfur Battery Performances. ChemistrySelect, 2021, 6, 9453-9457.	1.5	1
82	Selenium and sulfur inhomogeneity in free-standing ternary Sb2(Se,S)3 alloyed nanorods. CrystEngComm, 2020, 22, 6019-6025.	2.6	0
83	In Situ Carbon-coated Ni0.85Se@C Composite with High Performance for Sodium-ion Batteries. Chemistry Letters, 2022, 51, 221-223.	1.3	О