Simone A Joosten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7122699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards Fixed Dosing of Tocilizumab in ICU-Admitted COVID-19 Patients: Results of an Observational Population Pharmacokinetic and Descriptive Pharmacodynamic Study. Clinical Pharmacokinetics, 2022, 61, 231-247.	1.6	9
2	Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax, 2022, 77, 408-416.	2.7	23
3	Biomarkers to identify <i>Mycobacterium tuberculosis</i> infection among borderline QuantiFERON results. European Respiratory Journal, 2022, 60, 2102665.	3.1	11
4	Effects of BCG vaccination on donor unrestricted T cells in two prospective cohort studies. EBioMedicine, 2022, 76, 103839.	2.7	19
5	Antigen presentation by MHC-E: a putative target for vaccination?. Trends in Immunology, 2022, 43, 355-365.	2.9	12
6	Immunoglobulin G1 Fc glycosylation as an early hallmark of severe COVID-19. EBioMedicine, 2022, 78, 103957.	2.7	33
7	Applying the FAIR principles to data in a hospital: challenges and opportunities in a pandemic. Journal of Biomedical Semantics, 2022, 13, 12.	0.9	21
8	The role of donorâ€unrestricted Tâ€cells, innate lymphoid cells, and NK cells in antiâ€mycobacterial immunity. Immunological Reviews, 2021, 301, 30-47.	2.8	20
9	B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Frontiers in Immunology, 2021, 12, 640168.	2.2	49
10	Antibody Subclass and Glycosylation Shift Following Effective TB Treatment. Frontiers in Immunology, 2021, 12, 679973.	2.2	22
11	Serum Biomarker Profile Including CCL1, CXCL10, VEGF, and Adenosine Deaminase Activity Distinguishes Active From Remotely Acquired Latent Tuberculosis. Frontiers in Immunology, 2021, 12, 725447.	2.2	25
12	Conventional and Unconventional Lymphocytes in Immunity Against Mycobacterium tuberculosis. , 2021, , 133-168.		0
13	100Âyears of the Bacillus Calmette-Guérin vaccine. Vaccine, 2021, 39, 7221-7222.	1.7	9
14	Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected mice and zebrafish larvae. Scientific Reports, 2020, 10, 11635.	1.6	15
15	Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. Journal of Immunology, 2020, 205, 2861-2872.	0.4	19
16	Inverse correlation between serum complement component C1q levels and whole blood typeâ€1 interferon signature in active tuberculosis and QuantiFERONâ€positive uveitis: implications for diagnosis. Clinical and Translational Immunology, 2020, 9, e1196.	1.7	5
17	Expression and production of the SERPING1-encoded endogenous complement regulator C1-inhibitor in multiple cohorts of tuberculosis patients. Molecular Immunology, 2020, 120, 187-195.	1.0	19
18	Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Scientific Reports, 2020, 10, 7085.	1.6	27

#	Article	IF	CITATIONS
19	Systemic and pulmonary C1q as biomarker of progressive disease in experimental non-human primate tuberculosis. Scientific Reports, 2020, 10, 6290.	1.6	11
20	An Internet-Based Psychological Intervention With a Serious Game to Improve Vitality, Psychological and Physical Condition, and Immune Function in Healthy Male Adults: Randomized Controlled Trial. Journal of Medical Internet Research, 2020, 22, e14861.	2.1	6
21	Effectiveness of Stress-Reducing Interventions on the Response to Challenges to the Immune System: A Meta-Analytic Review. Psychotherapy and Psychosomatics, 2019, 88, 274-286.	4.0	37
22	Mobilizing unconventional T cells. Science, 2019, 366, 302-303.	6.0	20
23	Non-lytic antibiotic treatment in community-acquired pneumococcal pneumonia does not attenuate inflammation: the PRISTINE trial. Journal of Antimicrobial Chemotherapy, 2019, 74, 2385-2393.	1.3	1
24	Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathogens, 2019, 15, e1007724.	2.1	32
25	Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome. Frontiers in Immunology, 2019, 10, 527.	2.2	40
26	Harnessing donor unrestricted T-cells for new vaccines against tuberculosis. Vaccine, 2019, 37, 3022-3030.	1.7	59
27	Guidance for Studies Evaluating the Accuracy of Biomarker-Based Nonsputum Tests to Diagnose Tuberculosis. Journal of Infectious Diseases, 2019, 220, S108-S115.	1.9	38
28	Plasma metabolomics in tuberculosis patients with and without concurrent type 2 diabetes at diagnosis and during antibiotic treatment. Scientific Reports, 2019, 9, 18669.	1.6	41
29	Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1198-1208.	2.5	217
30	Detailed characterization of human <i>Mycobacterium tuberculosis</i> specific HLAâ€E restricted CD8 ⁺ TÂcells. European Journal of Immunology, 2018, 48, 293-305.	1.6	39
31	Atypical Human Effector/Memory CD4+ T Cells With a Naive-Like Phenotype. Frontiers in Immunology, 2018, 9, 2832.	2.2	40
32	Complement Component C1q as Serum Biomarker to Detect Active Tuberculosis. Frontiers in Immunology, 2018, 9, 2427.	2.2	43
33	Complement component C1q as serum biomarker to detect active tuberculosis. Molecular Immunology, 2018, 102, 185.	1.0	1
34	Mycobacterial growth inhibition is associated with trained innate immunity. Journal of Clinical Investigation, 2018, 128, 1837-1851.	3.9	144
35	Cross-laboratory evaluation of multiplex bead assays including independent common reference standards for immunological monitoring of observational and interventional human studies. PLoS ONE, 2018, 13, e0201205.	1.1	15
36	Friends and foes of tuberculosis: modulation of protective immunity. Journal of Internal Medicine, 2018, 284, 125-144.	2.7	12

#	Article	IF	CITATIONS
37	A novel view on the pathogenesis of complications after intravesical BCG for bladder cancer. International Journal of Infectious Diseases, 2018, 72, 63-68.	1.5	12
38	Patients with Concurrent Tuberculosis and Diabetes Have a Pro-Atherogenic Plasma Lipid Profile. EBioMedicine, 2018, 32, 192-200.	2.7	36
39	A Serum Circulating miRNA Signature for Short-Term Risk of Progression to Active Tuberculosis Among Household Contacts. Frontiers in Immunology, 2018, 9, 661.	2.2	42
40	Human CD4 T-Cells With a Naive Phenotype Produce Multiple Cytokines During Mycobacterium Tuberculosis Infection and Correlate With Active Disease. Frontiers in Immunology, 2018, 9, 1119.	2.2	24
41	Antibody glycosylation in inflammation, disease and vaccination. Seminars in Immunology, 2018, 39, 102-110.	2.7	131
42	Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine, 2017, 35, 1652-1661.	1.7	47
43	Long-lasting tuberculous pleurisy. European Respiratory Journal, 2017, 49, 1700356.	3.1	3
44	Immunological characterization of latent tuberculosis infection in a low endemic country. Tuberculosis, 2017, 106, 62-72.	0.8	12
45	The effects of a psychological intervention directed at optimizing immune function: study protocol for a randomized controlled trial. Trials, 2017, 18, 243.	0.7	6
46	TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Frontiers in Immunology, 2017, 8, 1203.	2.2	44
47	MHC lb molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathogens, 2017, 13, e1006384.	2.1	47
48	Tuberculosis Biomarkers: From Diagnosis to Protection. Gastroenterology Insights, 2016, 8, 6568.	0.7	129
49	Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. Journal of Immunology Research, 2016, 2016, 1-11.	0.9	69
50	Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. European Respiratory Journal, 2016, 48, 1751-1763.	3.1	165
51	BCG lowers plasma cholesterol levels and delays atherosclerotic lesion progression in mice. Atherosclerosis, 2016, 251, 6-14.	0.4	27
52	KLRG1 and PD-1 expression are increased on T-cells following tuberculosis-treatment and identify cells with different proliferative capacities in BCG-vaccinated adults. Tuberculosis, 2016, 97, 163-171.	0.8	24
53	Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathogens, 2016, 12, e1005687.	2.1	138
54	Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious Diseases and Vaccination. Frontiers in Immunology, 2015, 6, 217.	2.2	129

#	Article	IF	CITATIONS
55	Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines. PLoS ONE, 2015, 10, e0138042.	1.1	71
56	Acquired immunodeficiencies and tuberculosis: focus on <scp>HIV</scp> / <scp>AIDS</scp> and diabetes mellitus. Immunological Reviews, 2015, 264, 121-137.	2.8	87
57	Biomarkers Can Identify Pulmonary Tuberculosis in HIV-infected Drug Users Months Prior to Clinical Diagnosis. EBioMedicine, 2015, 2, 172-179.	2.7	33
58	Human CD8+ T-cells Recognizing Peptides from Mycobacterium tuberculosis (Mtb) Presented by HLA-E Have an Unorthodox Th2-like, Multifunctional, Mtb Inhibitory Phenotype and Represent a Novel Human T-cell Subset. PLoS Pathogens, 2015, 11, e1004671.	2.1	97
59	Human CD8 T lymphocytes recognize <i>Mycobacterium tuberculosis</i> antigens presented by HLAâ€E during active tuberculosis and express type 2 cytokines. European Journal of Immunology, 2015, 45, 1069-1081.	1.6	59
60	Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Vaccine Journal, 2015, 22, 778-788.	3.2	55
61	Clinical Immunology and Multiplex Biomarkers of Human Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018515-a018515.	2.9	32
62	The Effect of Hyperglycaemia on In Vitro Cytokine Production and Macrophage Infection with Mycobacterium tuberculosis. PLoS ONE, 2015, 10, e0117941.	1.1	39
63	CD8+ Regulatory T Cells, and Not CD4+ T Cells, Dominate Suppressive Phenotype and Function after In Vitro Live Mycobacterium bovis-BCG Activation of Human Cells. PLoS ONE, 2014, 9, e94192.	1.1	34
64	A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine, 2014, 32, 7098-7107.	1.7	199
65	Innovative Strategies to Identify M. tuberculosis Antigens and Epitopes Using Genome-Wide Analyses. Frontiers in Immunology, 2014, 5, 256.	2.2	45
66	Differential gene expression of activating Fcl ³ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clinical Microbiology and Infection, 2014, 20, O230-O238.	2.8	65
67	<scp>CD</scp> 39 is involved in mediating suppression by <i><scp>M</scp>ycobacterium bovis</i> <scp>BCG</scp> â€activated human <scp>CD</scp> 8 ⁺ <scp>CD</scp> 39 ⁺ regulatory <scp>T</scp> Âcells. European Journal of Immunology, 2013, 43, 1925-1932.	1.6	44
68	A Helicopter Perspective on TB Biomarkers: Pathway and Process Based Analysis of Gene Expression Data Provides New Insight into TB Pathogenesis. PLoS ONE, 2013, 8, e73230.	1.1	86
69	Identification of biomarkers for tuberculosis disease using a novel dual-color RT–MLPA assay. Genes and Immunity, 2012, 13, 71-82.	2.2	96
70	The Antimicrobial Peptide hLF1–11 Drives Monocyte-Dendritic Cell Differentiation toward Dendritic Cells That Promote Antifungal Responses and Enhance Th17 Polarization. Journal of Innate Immunity, 2012, 4, 284-292.	1.8	25
71	Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine, 2011, 29, 2100-2109.	1.7	117
72	Elderly Subjects Have a Delayed Antibody Response and Prolonged Viraemia following Yellow Fever Vaccination: A Prospective Controlled Cohort Study. PLoS ONE, 2011, 6, e27753.	1.1	78

#	Article	IF	CITATIONS
73	Identification of Probable Early-Onset Biomarkers for Tuberculosis Disease Progression. PLoS ONE, 2011, 6, e25230.	1.1	39
74	Multifunctional CD4 ⁺ T cells correlate with active <i>Mycobacterium tuberculosis</i> infection. European Journal of Immunology, 2010, 40, 2211-2220.	1.6	270
75	The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. Microbes and Infection, 2010, 12, 910-918.	1.0	59
76	Comment on "CCR5 Dictates the Equilibrium of Proinflammatory IL-17+ and Regulatory Foxp3+ T Cells in Fungal Infections― Journal of Immunology, 2010, 185, 1351.2-1351.	0.4	0
77	Mycobacterium tuberculosis Peptides Presented by HLA-E Molecules Are Targets for Human CD8+ T-Cells with Cytotoxic as well as Regulatory Activity. PLoS Pathogens, 2010, 6, e1000782.	2.1	141
78	Identification of Major Factors Influencing ELISpot-Based Monitoring of Cellular Responses to Antigens from Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e7972.	1.1	46
79	Human CD4 and CD8 regulatory T cells in infectious diseases and vaccination. Human Immunology, 2008, 69, 760-770.	1.2	120
80	Human Anti-Inflammatory Macrophages Induce Foxp3+GITR+CD25+ Regulatory T Cells, Which Suppress via Membrane-Bound TGFβ-1. Journal of Immunology, 2008, 181, 2220-2226.	0.4	215
81	Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8029-8034.	3.3	178
82	Differential regulation of metzincins in experimental chronic renal allograft rejection: Potential markers and novel therapeutic targets. Kidney International, 2006, 69, 358-368.	2.6	33
83	Adoptive Transfer of Primed CD4+ T-Lymphocytes Induces Pattern of Chronic Allograft Nephropathy in a Nude Rat Model. Transplantation, 2005, 79, 753-761.	0.5	11
84	Chronic renal allograft rejection: Pathophysiologic considerations. Kidney International, 2005, 68, 1-13.	2.6	179
85	Genetic profiling of aortic allografts: prothymosin alpha as potential target?. Transplant International, 2005, 18, 1010-1015.	0.8	1
86	Antibody Response Against the Glomerular Basement Membrane Protein Agrin in Patients with Transplant Glomerulopathy. American Journal of Transplantation, 2005, 5, 383-393.	2.6	125
87	Antibodies against mesangial cells in a rat model of chronic renal allograft rejection. Nephrology Dialysis Transplantation, 2005, 20, 692-698.	0.4	12
88	Non-HLA humoral immunity and chronic kidney-graft loss. Lancet, The, 2005, 365, 1522-1523.	6.3	16
89	Immunologic risk factors and glomerular C4d deposits in chronic transplant glomerulopathy. Kidney International, 2004, 65, 2409-2418.	2.6	117
90	The pathobiology of chronic allograft nephropathy: Immune-mediated damage and accelerated aging. Kidney International, 2004, 65, 1556-1559.	2.6	43

#	Article	IF	CITATIONS
91	Chronic rejection in renal transplantation. Transplantation Reviews, 2004, 18, 86-95.	1.2	Ο
92	ANTI-TUBULAR BASEMENT MEMBRANE ANTIBODIES AND GIANT CELL FORMATION IN A MODEL OF CHRONIC RENAL ALLOGRAFT REJECTION. Transplantation, 2004, 77, 1295-1297.	0.5	3
93	Pathogenesis of chronic allograft rejection. Transplant International, 2003, 16, 137-145.	0.8	59
94	Telomere Shortening and Cellular Senescence in a Model of Chronic Renal Allograft Rejection. American Journal of Pathology, 2003, 162, 1305-1312.	1.9	90
95	Chronic rejection in renal transplantation. Transplantation Reviews, 2003, 17, 117-130.	1.2	2
96	Pathogenesis of chronic allograft rejection. Transplant International, 2003, 16, 137-45.	0.8	24
97	Antibody Response Against Perlecan and Collagen Types IV and VI in Chronic Renal Allograft Rejection in the Rat. American Journal of Pathology, 2002, 160, 1301-1310.	1.9	81
98	Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia, 2001, 15, 1485-1487.	3.3	91
99	Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia, 2000, 14, 1426-1435.	3.3	190