Michael P Hannigan

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/7122629/publications.pdf
Version: 2024-02-01

Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and1 Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and4.6365Chamber Observations. Environmental Science \& Technology, 2009, 43, 2443-2449.2 Seasonal Variability in Bacterial and Fungal Diversity of the Near-Surface Atmosphere. Environmental4.6Science \& Technology, 2013, 47, 12097-12106.4493 The next generation of low-cost personal air quality sensors for quantitative exposure monitoring.1.23 Atmospheric Measurement Techniques, 2014, 7, 3325-3336.1.24 Respeciation of organic gas emissions and the detection of excess unburned gasoline in theatmosphere. Environmental Science \& Technology, 1992, 26, 2395-2408.$4.6 \quad 175$175
Source Apportionment of in Vitro Reactive Oxygen Species Bioassay Activity from AtmosphericParticulate Matter. Environmental Science \& Technology, 2008, 42, 7502-7509.
156The Temporal Lag Structure of Short-term Associations of Fine Particulate Matter Chemical6 Constituents and Cardiovascular and Respiratory Hospitalizations. Environmental Health2.8Perspectives, 2012, 120, 1094-1099.
$7 \quad$ Bioassay-Directed Chemical Analysis of Los Angeles Airborne Particulate Matter Using a Human Cell Mutagenicity Assay. Environmental Science \& Technology, 1998, 32, 3502-3514. 4.6 144Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary). Sensors,
$2017,17,2478$.$2017,17,2478$.2.1144
A Macrophage-Based Method for the Assessment of the Reactive Oxygen Species (ROS) Activity of$9 \quad$ Atmospheric Particulate Matter (PM) and Application to Routine (Daily-24 h) Aerosol Monitoring1.5142Studies. Aerosol Science and Technology, 2008, 42, 946-957.
10 ARIEL. , 2012, , .126
11 Trends in Fine Particle Concentration and Chemical Composition in Southern California. Journal of the Air and Waste Management Association, 2000, 50, 43-53. 0.9 109
12 Hallway based automatic indoor floorplan construction using room fingerprints. , 2013, , .93
13 Natural soiling of photovoltaic cover plates and the impact on transmission. Renewable Energy, 2015,
77, 166-173.4.391Approach for quantification of metal oxide type semiconductor gas sensors used for ambient airquality monitoring. Sensors and Actuators B: Chemical, 2015, 208, 339-345.
36, 5807-5818.84
MAQS. , 2011, , .
Source Apportionment of Fine ($\mathrm{PM}<$ sub> $1.8</ \mathrm{sub}\rangle$) and Ultrafine ($\mathrm{PM}<$ sub> $0.1</$ sub \rangle) Airborne
$17 \quad$ Particulate Matter during a Severe Winter Pollution Episode. Environmental Science \& 4.6 69
Technology, 2009, 43, 272-279.Concentrations and source insights for trace elements in fine and coarse particulate matter.Atmospheric Environment, 2014, 89, 373-381.1.968
New Emission Factors and Efficiencies from in-Field Measurements of Traditional and Improved
Cookstoves and Their Potential Implications. Environmental Science \& Technology, 2017, 51 ,
$12508-12517$.
Assessment of cookstove stacking in Northern Ghana using surveys and stove use monitors. Energy
for Sustainable Development, 2016, 34, 67-76.

22 Size Distribution of Trace Organic Species Emitted from Heavy-Duty Diesel Vehicles. Environmental
23 Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality.

Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil
24 and gas production region with low-cost sensors. Sensors and Actuators B: Chemical, 2019, 283,
$4.0 \quad 52$ 504-514.

$25 \quad$| Source apportionment using positive matrix factorization on daily measurements of inorganic and |
| :--- |
| organic speciated PM2.5. Atmospheric Environment, 2010, 44, 2731-2741. |

26 Light absorption of organic carbon and its sources at a southeastern U.S. location in summer.
Environmental Pollution, 2019, 244, 38-46.
3.7

48

$$
27 \quad \text { Adoption of improved biomass stoves and stove/fuel stacking in the REACCTING intervention study in }
$$

27 Northern Chana. Energy Policy, 2019, 130, 361-374.

Use of Synthetic Data to Evaluate Positive Matrix Factorization as a Source Apportionment Tool for
PM2.5 Exposure Data. Environmental Science \& Technology, 2006, 40, 1892-1901.
PM2.5 characterization for time series studies: Pointwise uncertainty estimation and bulk speciation
methods applied in Denver. Atmospheric Environment, 2009, 43, 1136-1146.
Drop size-dependent chemical composition of clouds and fogs. Part II: Relevance to interpreting the aerosol/trace gas/fog system. Atmospheric Environment, 2004, 38, 1403-1415.
1.9
44

Gas/particle partitioning of n-alkanes, PAHs and oxygenated PAHs in urban Denver. Atmospheric
1.9

44
Environment, 2014, 95, 355-362.

Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways. Bulletin of the American Meteorological Society, 2005, 86, 1738-1742.
1.7

43

Positive Matrix Factorization of PM _{2.5}: Comparison and Implications of Using Different
Speciation Data Sets. Environmental Science \& Technology, 2012, 46, 11962-11970.
$4.6 \quad 42$

The contribution of biological particles to observed particulate organic carbon at a remote high
497-513.

43	Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Chana (REACCTING): study rationale and protocol. BMC Public Health, 2015, 15, 126.
44	Bacterial Mutagenicity of Urban Organic Aerosol Sources in Comparison to Atmospheric Samples Environmental Science \& Technology, 1994, 28, 2014-2024.
45	Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado. Environmental Science \& Technology, 2010, 44, 6256-6262.

Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor
Temporal patterns in daily measurements of inorganic and organic speciated PM2.5 in Denver.
Atmospheric Environment, 2010, 44, 987-998.
62 Using A Low-Cost Sensor Array and Machine Learning Techniques to Detect Complex Pollutant Mixtures and Identify Likely Sources. Sensors, 2019, 19, 3723.

Characterization and Nonparametric Regression of Rural and Urban Coarse Particulate Matter Mass
Concentrations in Northeastern Colorado. Aerosol Science and Technology, 2012, 46, 108-123.

The short-term association of selected components of fine particulate matter and mortality in the Denver Aerosol Sources and Health (DASH) study. Environmental Health, 2015, 14, 49.

Testing the performance of field calibration techniques for low-cost gas sensors in new deployment
69 locations: across a county line and across Colorado. Atmospheric Measurement Techniques, 2018, 11,
1.2

6351-6378.
Evaluating and improving the reliability of gas-phase sensor system calibrations across new locations
70 for ambient measurements and personal exposure monitoring. Atmospheric Measurement Techniques,
1.2

2019, 12, 4211-4239.
71 Intra-urban spatial variability of PM2.5-bound carbonaceous components. Atmospheric Environment,
2012, 60, 486-494.
1.9

20
73

> Improving present day and future estimates of anthropogenic sectoral emissions and the resulting air quality impacts in Africa. Faraday Discussions, $2017,200,397-412$.
1.6

19

Intra-urban spatial variability and uncertainty assessment of PM2.5 sources based on carbonaceous
1.9

74 species. Atmospheric Environment, 2012, 60, 305-315.
18
1.

75 Impact of natural soiling on the transmission of PV cover plates. , 2013, , .
16

76 Predicting Photovoltaic Soiling From Air Quality Measurements. IEEE Journal of Photovoltaics, 2020,
1.5

10, 1142-1147.
16

Using gas-phase air quality sensors to disentangle potential sources in a Los Angeles neighborhood.
Atmospheric Environment, 2020, 233, 117519.

Collocated speciation of PM2.5 using tandem quartz filters in northern nanjing, China: Sampling artifacts and measurement uncertainty. Atmospheric Environment, 2021, 246, 118066.
1.9

14

Characterizing methane and total non-methane hydrocarbon levels in Los Angeles communities with
oil and gas facilities using air quality monitors. Science of the Total Environment, 2021, 777, 146194.
3.9

14

80 Photochemical Aging of Atmospheric Particulate Matter in the Aqueous Phase. Environmental Science
\& Technology, 2021, 55, 13152-13163.

81 Indoor Pollutant Levels from the Use of Unvented Natural Gas Fireplaces in Boulder, Colorado.

81 Journal of the Air and Waste Management Association, 2001, 51, 1654-1661.

Characterization of coarse particulate matter in the western United States: a comparison between
82 observation and modeling. Atmospheric Chemistry and Physics, 2013, 13, 1311-1327.
1.9

13

83 MAQS. , 2011, , 12

84 Evaluation of retrofit crankcase ventilation controls and diesel oxidation catalysts for reducing air
pollution in school buses. Atmospheric Environment, 2009, 43, 5916-5922.
$1.9 \quad 11$

Intra-community spatial variation of size-fractionated organic compounds in Long Beach, California.
Air Quality, Atmosphere and Health, 2009, 2, 69-88.

Development and validation of inexpensive, automated, dynamic flux chambers. Atmospheric Measurement Techniques, 2015, 8, 267-280.
1.2

11

Comparing Building and Neighborhood-Scale Variability of CO2 and O3 to Inform Deployment
Considerations for Low-Cost Sensor System Use. Sensors, 2018, 18, 1349.
$2.1 \quad 11$

Attributing Air Pollutant Exposure to Emission Sources with Proximity Sensing. Atmosphere, 2019, 10,
395.
1.0

10

Particulate Sensor within a Household Energy Study. Atmosphere, 2019, 10, 400.
91
92

> Low-cost measurement techniques to characterize the influence of home heating fuel on carbon monoxide in Navajo homes. Science of the Total Environment, 2018, 625, 608-618.

The sensitivity of health effect estimates from time-series studies to fine particulate matter
component sampling schedule. Journal of Exposure Science and Environmental Epidemiology, 2013, 23,
1.8
3.9

9 481-486.
Errors in coarse particulate matter mass concentrations and spatiotemporal characteristics when
using subtraction estimation methods. Journal of the Air and Waste Management Association, 2013,

$1386-1398$. | Iron Speciation in PM 2.5 From Urban, Agriculture, and Mixed Environments in Colorado, USA. Earth |
| :--- |
| and Space Science, 2020, 7, e2020EA001262. |

$0.9 \quad 8$
using subtraction estimation methods. Journal of the Air and Waste Management Association, 2013, 63, and Space Science, 2020, 7, e2020EA001262.
1.18
95

Prices, peers, and perceptions (P3): study protocol for improved biomass cookstove project in northern Chana. BMC Public Health, 2018, 18, 1209.
1.2

Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana. Atmosphere, 2019, 10,
402.

99	On the development and implementation of a project-based learning curriculum for air quality in K -12 schools., 2015, , .		5
100	Updated Emission Factors from Diffuse Combustion Sources in Sub-Saharan Africa and Their Effect on Regional Emission Estimates. Environmental Science \& Technology, 2019, 53, 6392-6401.	4.6	5
101	A glimpse into real-world kitchens: Improving our understanding of cookstove usage through in-field photo-observations and improved cooking event detection (CookED) analytics. Development Engineering, 2021, 6, 100065.	1.4	5
102	Improving Air Pollutant Metal Oxide Sensor Quantification Practices through: An Exploration of Sensor Signal Normalization, Multi-Sensor and Universal Calibration Model Generation, and Physical Factors Such as Co-Location Duration and Sensor Age. Atmosphere, 2021, 12, 645.	1.0	5
103	Regional and National Scale Spatial Variability of Photovoltaic Cover Plate Soiling and Subsequent Solar Transmission Losses. IEEE Journal of Photovoltaics, 2017, 7, 1354-1361.	1.5	4
104	Health impacts of a randomized biomass cookstove intervention in northern Ghana. BMC Public Health, 2021, 21, 2211.	1.2	3

