Daniel Jost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7122500/publications.pdf Version: 2024-02-01

DANIEL LOST

#	Article	IF	CITATIONS
1	Polymer Modeling of 3D Epigenome Folding: Application to Drosophila. Methods in Molecular Biology, 2022, 2301, 293-305.	0.4	5
2	Spatial organization of chromosomes leads to heterogeneous chromatin motion and drives the liquid- or gel-like dynamical behavior of chromatin. Genome Research, 2022, 32, 28-43.	2.4	27
3	3DGenBench: a web-server to benchmark computational models for 3D Genomics. Nucleic Acids Research, 2022, 50, W4-W12.	6.5	10
4	4D nucleome modeling. Current Opinion in Genetics and Development, 2021, 67, 25-32.	1.5	34
5	Live imaging and biophysical modeling support a button-based mechanism of somatic homolog pairing in Drosophila. ELife, 2021, 10, .	2.8	21
6	Polymer modelling unveils the roles of heterochromatin and nucleolar organizing regions in shaping 3D genome organization in <i>Arabidopsis thaliana</i> . Nucleic Acids Research, 2021, 49, 1840-1858.	6.5	34
7	Genome organization via loop extrusion, insights from polymer physics models. Briefings in Functional Genomics, 2020, 19, 119-127.	1.3	11
8	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. PLoS Computational Biology, 2020, 16, e1007869.	1.5	10
9	4D Genome Rewiring during Oncogene-Induced and Replicative Senescence. Molecular Cell, 2020, 78, 522-538.e9.	4.5	107
10	Guidelines for cell-type heterogeneity quantification based on a comparative analysis of reference-free DNA methylation deconvolution software. BMC Bioinformatics, 2020, 21, 16.	1.2	34
11	Chromosome dynamics during interphase: a biophysical perspective. Current Opinion in Genetics and Development, 2020, 61, 37-43.	1.5	48
12	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		0
13	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		0
14	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		0
15	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		0
16	Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes. Nucleic Acids Research, 2019, 47, 6195-6207.	6.5	53
17	Global chromatin conformation differences in the Drosophila dosage compensated chromosome X. Nature Communications, 2019, 10, 5355.	5.8	28
18	Modeling the Functional Coupling between 3D Chromatin Organization and Epigenome. , 2019, , 21-56.		4

DANIEL JOST

#	Article	IF	CITATIONS
19	TADs are 3D structural units of higher-order chromosome organization in <i>Drosophila</i> . Science Advances, 2018, 4, eaar8082.	4.7	237
20	Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance. Nucleic Acids Research, 2018, 46, 2252-2264.	6.5	65
21	Assigning function to natural allelic variation via dynamic modeling of gene network induction. Molecular Systems Biology, 2018, 14, e7803.	3.2	1
22	A Polymer Physics View on Universal and Sequence-Specific Aspects of Chromosome Folding. , 2018, , 149-169.		7
23	How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes. PLoS Computational Biology, 2018, 14, e1006159.	1.5	72
24	Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Research, 2017, 25, 35-50.	1.0	65
25	IC-Finder: inferring robustly the hierarchical organization of chromatin folding. Nucleic Acids Research, 2017, 45, gkx036.	6.5	54
26	Coupling 1D modifications and 3D nuclear organization: data, models and function. Current Opinion in Cell Biology, 2017, 44, 20-27.	2.6	37
27	Exploiting Single-Cell Quantitative Data to Map Genetic Variants Having Probabilistic Effects. PLoS Genetics, 2016, 12, e1006213.	1.5	11
28	The folding landscape of the epigenome. Physical Biology, 2016, 13, 026001.	0.8	32
29	Effect of replication on epigenetic memory and consequences on gene transcription. Physical Biology, 2015, 12, 026007.	0.8	20
30	Differential spatial and structural organization of the X chromosome underlies dosage compensation in <i>C. elegans</i> . Genes and Development, 2014, 28, 2591-2596.	2.7	48
31	Bifurcation in epigenetics: Implications in development, proliferation, and diseases. Physical Review E, 2014, 89, 010701.	0.8	40
32	Quantitative effect of target translation on small RNA efficacy reveals a novel mode of interaction. Nucleic Acids Research, 2014, 42, 12200-12211.	6.5	11
33	Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Research, 2014, 42, 9553-9561.	6.5	362
34	Temperature Dependence of the DNA Double Helix at the Nanoscale: Structure, Elasticity, and Fluctuations. Biophysical Journal, 2013, 105, 1904-1914.	0.2	34
35	Regulating the Many to Benefit the Few: Role of Weak Small RNA Targets. Biophysical Journal, 2013, 104, 1773-1782.	0.2	21
36	Twist-DNA: computing base-pair and bubble opening probabilities in genomic superhelical DNA. Bioinformatics, 2013, 29, 2479-2481.	1.8	8

DANIEL JOST

#	Article	IF	CITATIONS
37	Bubble statistics and positioning in superhelically stressed DNA. Physical Review E, 2011, 84, 031912.	0.8	16
38	Small RNA biology is systems biology. BMB Reports, 2011, 44, 11-21.	1.1	36
39	Prediction of RNA multiloop and pseudoknot conformations from a lattice-based, coarse-grain tertiary structure model. Journal of Chemical Physics, 2010, 132, 095101.	1.2	14
40	Genome wide application of DNA melting analysis. Journal of Physics Condensed Matter, 2009, 21, 034108.	0.7	13
41	A Unified Poland-Scheraga Model of Oligo- and Polynucleotide DNA Melting: Salt Effects and Predictive Power. Biophysical Journal, 2009, 96, 1056-1067.	0.2	36
42	Ground-state energy and Wigner crystallization in thick two-dimensional electron systems. Physical Review B, 2005, 72, .	1.1	6