Mattias BjA¶rnmalm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7122035/publications.pdf

Version: 2024-02-01

		172386	206029
51	5,427	29	48
papers	citations	h-index	g-index
53	53	53	8956
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348, aaa2491.	6.0	1,272
2	Innovation in Layer-by-Layer Assembly. Chemical Reviews, 2016, 116, 14828-14867.	23.0	678
3	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	15.6	455
4	Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials, 2018, 30, e1801362.	11.1	415
5	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	7.3	304
6	Coatings super-repellent to ultralow surface tension liquids. Nature Materials, 2018, 17, 1040-1047.	13.3	289
7	Assembly of Layer-by-Layer Particles and Their Interactions with Biological Systems. Chemistry of Materials, 2014, 26, 452-460.	3.2	177
8	Metal–Phenolic Supramolecular Gelation. Angewandte Chemie - International Edition, 2016, 55, 13803-13807.	7.2	147
9	Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Advanced Drug Delivery Reviews, 2019, 138, 259-275.	6.6	146
10	Nanoengineered Templated Polymer Particles: Navigating the Biological Realm. Accounts of Chemical Research, 2016, 49, 1139-1148.	7.6	122
11	Rustâ€Mediated Continuous Assembly of Metal–Phenolic Networks. Advanced Materials, 2017, 29, 1606717.	11.1	112
12	Superâ€Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model. Advanced Materials, 2014, 26, 7295-7299.	11.1	107
13	Engineering and evaluating drug delivery particles in microfluidic devices. Journal of Controlled Release, 2014, 190, 139-149.	4.8	104
14	Particle Targeting in Complex Biological Media. Advanced Healthcare Materials, 2018, 7, 1700575.	3.9	94
15	Particle Carriers for Combating Multidrug-Resistant Cancer. ACS Nano, 2013, 7, 9512-9517.	7. 3	89
16	Nanoengineering Particles through Template Assembly. Chemistry of Materials, 2017, 29, 289-306.	3.2	76
17	Multiligand Metal–Phenolic Assembly from Green Tea Infusions. ACS Applied Materials & Interfaces, 2018, 10, 7632-7639.	4.0	60
18	Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting. Langmuir, 2018, 34, 10817-10827.	1.6	55

#	Article	IF	CITATIONS
19	Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin. PLoS ONE, 2014, 9, e103094.	1.1	50
20	Increasing the Impact of Materials in and beyond Bio-Nano Science. Journal of the American Chemical Society, 2016, 138, 13449-13456.	6.6	49
21	A Framework to Account for Sedimentation and Diffusion in Particle–Cell Interactions. Langmuir, 2016, 32, 12394-12402.	1.6	48
22	Targeting Ability of Affibody-Functionalized Particles Is Enhanced by Albumin but Inhibited by Serum Coronas. ACS Macro Letters, 2015, 4, 1259-1263.	2.3	44
23	Supramolecular Metal–Phenolic Gels for the Crystallization of Active Pharmaceutical Ingredients. Small, 2018, 14, e1801202.	5. 2	37
24	Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration. ACS Applied Materials & Description (1988) amp; Interfaces, 2020, 12, 3746-3754.	4.0	36
25	Fluidized Bed Layer-by-Layer Microcapsule Formation. Langmuir, 2014, 30, 10028-10034.	1.6	35
26	Gel-Mediated Electrospray Assembly of Silica Supraparticles for Sustained Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31019-31031.	4.0	35
27	Dynamic Flow Impacts Cell–Particle Interactions: Sedimentation and Particle Shape Effects. Langmuir, 2016, 32, 10995-11001.	1.6	33
28	Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. Biomacromolecules, 2019, 20, 3592-3600.	2.6	31
29	Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration. Langmuir, 2015, 31, 9054-9060.	1.6	30
30	Structure Governs the Deformability of Polymer Particles in a Microfluidic Blood Capillary Model. ACS Macro Letters, 2015, 4, 1205-1209.	2.3	28
31	Metal–Phenolic Supramolecular Gelation. Angewandte Chemie, 2016, 128, 14007-14011.	1.6	27
32	<i>In vivo</i> biocompatibility and immunogenicity of metal–phenolic gelation. Chemical Science, 2019, 10, 10179-10194.	3.7	24
33	Assembly-Controlled Permeability of Layer-by-Layer Polymeric Microcapsules Using a Tapered Fluidized Bed. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27940-27947.	4.0	23
34	Revisiting cell–particle association in vitro: A quantitative method to compare particle performance. Journal of Controlled Release, 2019, 307, 355-367.	4.8	23
35	Patterned Poly(dopamine) Films for Enhanced Cell Adhesion. Bioconjugate Chemistry, 2017, 28, 75-80.	1.8	20
36	Engineering Biocoatings To Prolong Drug Release from Supraparticles. Biomacromolecules, 2019, 20, 3425-3434.	2.6	20

#	Article	IF	Citations
37	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	5.6	20
38	Mold-Templated Inorganic–Organic Hybrid Supraparticles for Codelivery of Drugs. Biomacromolecules, 2014, 15, 4146-4151.	2.6	18
39	Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles. Nanoscale, 2014, 6, 13416-13420.	2.8	17
40	A few clarifications on MIRIBEL. Nature Nanotechnology, 2020, 15, 2-3.	15.6	15
41	Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational Forces. European Journal of Inorganic Chemistry, 2016, 2016, 4499-4504.	1.0	12
42	Robust Chemistry: The Importance of Data and Methods Sharing. Angewandte Chemie - International Edition, 2018, 57, 1122-1123.	7.2	12
43	Interactions between circulating nanoengineered polymer particles and extracellular matrix components in vitro. Biomaterials Science, 2017, 5, 267-273.	2.6	11
44	Advancing Research Using Action Cameras. Chemistry of Materials, 2016, 28, 8441-8442.	3.2	10
45	Investigating affinity-maturation strategies and reproducibility of fluorescence-activated cell sorting using a recombinant ADAPT library displayed on staphylococci. Protein Engineering, Design and Selection, 2016, 29, 187-195.	1.0	8
46	Robuste Chemie: die Bedeutung des Teilens von Daten und Methoden. Angewandte Chemie, 2018, 130, 1136-1137.	1.6	4
47	Particle Targeting: Particle Targeting in Complex Biological Media (Adv. Healthcare Mater. 1/2018). Advanced Healthcare Materials, 2018, 7, 1870004.	3.9	2
48	Hydrogel Particles: Super-Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model (Adv. Mater. 43/2014). Advanced Materials, 2014, 26, 7416-7416.	11.1	1
49	Nanoengineering of Soft Polymer Particles for Exploring Bio-Nano Interactions. , 2018, , 393-419.		1
50	Perspectives on Open Science and Scholarly Publishing: a Survey Study Focusing on Early Career Researchers in Europe. F1000Research, 0, 10, 1306.	0.8	1
51	Game over: empower early career researchers to improve research quality. Insights: the UKSG Journal, 2021, 34, .	0.1	0