
RuslÃ;n Ãlvarez-Diduk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7121772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food Antioxidants: Chemical Insights at the Molecular Level. Annual Review of Food Science and Technology, 2016, 7, 335-352.	9.9	294
2	Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano, 2020, 14, 2585-2627.	14.6	239
3	Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, 2020, 15, 3788-3816.	12.0	235
4	Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sensors, 2021, 6, 3093-3101.	7.8	129
5	Role of the reacting free radicals on the antioxidant mechanism of curcumin. Chemical Physics, 2009, 363, 13-23.	1.9	104
6	Deprotonation Mechanism and Acidity Constants in Aqueous Solution of Flavonols: a Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 2013, 117, 12347-12359.	2.6	99
7	Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Analytical Chemistry, 2018, 90, 5850-5856.	6.5	79
8	Adrenaline and Noradrenaline: Protectors against Oxidative Stress or Molecular Targets?. Journal of Physical Chemistry B, 2015, 119, 3479-3491.	2.6	70
9	Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Scientific Reports, 2017, 7, 976.	3.3	63
10	Nano-lantern on paper for smartphone-based ATP detection. Biosensors and Bioelectronics, 2020, 150, 111902.	10.1	53
11	<i>N</i> -Acetylserotonin and 6-Hydroxymelatonin against Oxidative Stress: Implications for the Overall Protection Exerted by Melatonin. Journal of Physical Chemistry B, 2015, 119, 8535-8543.	2.6	50
12	Lab in a Tube: Point-of-Care Detection of <i>Escherichia coli</i> . Analytical Chemistry, 2020, 92, 4209-4216.	6.5	50
13	Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosensors and Bioelectronics, 2020, 168, 112559.	10.1	43
14	Electrochromism: An emerging and promising approach in (bio)sensing technology. Materials Today, 2021, 50, 476-498.	14.2	33
15	Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS Nano, 2021, 15, 17137-17149.	14.6	32
16	Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Analytical Chemistry, 2022, 94, 1271-1285.	6.5	29
17	Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chemical Society Reviews, 2021, 50, 13012-13089.	38.1	25
18	Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Analytical Chemistry, 2021, 93, 3112-3121.	6.5	21

#	Article	IF	CITATIONS
19	Screen-Printed Electroluminescent Lamp Modified with Graphene Oxide as a Sensing Device. ACS Applied Materials & Interfaces, 2018, 10, 20775-20782.	8.0	20
20	Lateral flow device for water fecal pollution assessment: from troubleshooting of its microfluidics using bioluminescence to colorimetric monitoring of generic <i>Escherichia coli</i> . Lab on A Chip, 2021, 21, 2417-2426.	6.0	19
21	The key role of the sequential proton loss electron transfer mechanism on the free radical scavenging activity of some melatonin-related compounds. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	18
22	A Novel Ratiometric Fluorescent Approach for the Modulation of the Dynamic Range of Lateral Flow Immunoassays. Advanced Materials Technologies, 2022, 7, .	5.8	17
23	Selective stamping of laser scribed rGO nanofilms: from sensing to multiple applications. 2D Materials, 2020, 7, 024006.	4.4	10
24	Improved Aliivibrio fischeri based-toxicity assay: Graphene-oxide as a sensitivity booster with a mobile-phone application. Journal of Hazardous Materials, 2021, 406, 124434.	12.4	9
25	Graphene Nanobeacons with Highâ€Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small, 2022, 18, .	10.0	6
26	Nanoparticle-based lateral flow assays. Comprehensive Analytical Chemistry, 2020, 89, 313-359.	1.3	5
27	Development of a Heavy Metal Sensing Boat for Automatic Analysis in Natural Waters Utilizing Anodic Stripping Voltammetry. ACS ES&T Water, 2021, 1, 2470-2476.	4.6	5
28	Electrochemical Characterization of Quercetin in Aqueous Solution. ECS Transactions, 2009, 20, 115-122.	0.5	4
29	Electrochemical Determination of the Antioxidant Capacity of Organic Compounds. ECS Transactions, 2008, 15, 471-478.	0.5	2
30	ATP Sensing Paper with Smartphone Bioluminescence-Based Detection. Methods in Molecular Biology, 2022, , 297-307.	0.9	2
31	Optical smartphone-based sensing: diagnostic of biomarkers. , 2022, , 277-302.		1
32	Electrochemistry and Spectrophotometric Study for Boron-Azomethine-H Complex Detection. ECS Transactions, 2008, 15, 499-506.	0.5	0